Let H be a hypergraph of rank k, that is, |H| ≦ k for all H ∈ H. Let ν(H) denote the matching number, the maximum number of pairwise disjoint edges in H. For a vertex x let H(x̄) be the hypergraph consisting of the edges H ∈ H with x ∉ H. If ν(H(x̄)) = ν(H) for all vertices, H is called resilient. The main result is the complete determination of the maximum number of 2-element sets in a resilient hypergraph with matching number s. For k=3 it is (2s+12)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\begin{array}{*{20}c}
{2s + 1} \\
2 \\
\end{array} } \right)$$\end{document} while for k ≧ 4 the formula is k⋅(2s+12)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \cdot \left( {\begin{array}{*{20}c}
{2s + 1} \\
2 \\
\end{array} } \right)$$\end{document}. The results are used to obtain a stability theorem for k-uniform hypergraphs with given matching number.
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Arunachalam, Srinivasan
Vrana, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Geometry, Budapest, Hungary
MTA BME Lendulet Quantum Informat Theory Res Grp, Budapest, HungaryMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA