Resilient Hypergraphs with Fixed Matching Number

被引:0
|
作者
Peter Frankl
机构
[1] Alfréd Rényi Institute,
来源
Combinatorica | 2018年 / 38卷
关键词
05D05; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a hypergraph of rank k, that is, |H| ≦ k for all H ∈ H. Let ν(H) denote the matching number, the maximum number of pairwise disjoint edges in H. For a vertex x let H(x̄) be the hypergraph consisting of the edges H ∈ H with x ∉ H. If ν(H(x̄)) = ν(H) for all vertices, H is called resilient. The main result is the complete determination of the maximum number of 2-element sets in a resilient hypergraph with matching number s. For k=3 it is (2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document} while for k ≧ 4 the formula is k⋅(2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \cdot \left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document}. The results are used to obtain a stability theorem for k-uniform hypergraphs with given matching number.
引用
收藏
页码:1079 / 1094
页数:15
相关论文
共 50 条
  • [1] Resilient Hypergraphs with Fixed Matching Number
    Frankl, Peter
    COMBINATORICA, 2018, 38 (05) : 1079 - 1094
  • [2] On the maximum diversity of hypergraphs with fixed matching number
    Frankl, Peter
    Wang, Jian
    DISCRETE APPLIED MATHEMATICS, 2025, 364 : 120 - 135
  • [3] On the maximum number of edges in hypergraphs with fixed matching and clique number
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [4] Extremal hypergraphs for matching number and domination number
    Shan, Erfang
    Dong, Yanxia
    Kang, Liying
    Li, Shan
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 415 - 421
  • [5] The Turan number of Berge-matching in hypergraphs
    Kang, Liying
    Ni, Zhenyu
    Shan, Erfang
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [6] IRREGULAR EMBEDDINGS OF HYPERGRAPHS WITH FIXED CHROMATIC NUMBER
    JACOBSON, MS
    LEHEL, J
    DISCRETE MATHEMATICS, 1995, 145 (1-3) : 145 - 150
  • [7] On the number of large h-hypergraphs with a fixed diameter
    Tomescu, I
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 287 - 297
  • [8] The asymptotic induced matching number of hypergraphs: balanced binary strings
    Arunachalam, Srinivasan
    Vrana, Peter
    Zuiddam, Jeroen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 30
  • [9] The matching polynomials of hypergraphs and weighted hypergraphs
    Yang, Jia-Wen
    Wang, Wen-Huan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [10] The size of 3-uniform hypergraphs with given matching number and codegree
    Hou, Xinmin
    Yu, Lei
    Gao, Jun
    Liu, Boyuan
    DISCRETE MATHEMATICS, 2019, 342 (03) : 760 - 767