On the maximum number of edges in hypergraphs with fixed matching and clique number

被引:1
|
作者
Frankl, Peter [1 ]
Liu, Erica L. L. [2 ,3 ]
Wang, Jian [4 ]
机构
[1] Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Taiyuan Univ Technol Taiyuan, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERSECTION-THEOREMS; SIZE; SYSTEMS;
D O I
10.1016/j.ejc.2022.103589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a k-graph F subset of ([n] ), the clique number of F is defined to be the maximum size of a subset Q of [n] with (Q k ) & SUB; F. In the present paper, we determine the maximum number of edges in a k-graph on [n] with matching number at most s and clique number at least q for n < 8k2s and for q > (s + 1)k - l, n & LE; (s + 1)k + s/(3k) - l. Two special cases that q = (s + 1)k - 2 and k = 2 are solved completely. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:24
相关论文
共 50 条