On the maximum number of edges in hypergraphs with fixed matching and clique number

被引:1
|
作者
Frankl, Peter [1 ]
Liu, Erica L. L. [2 ,3 ]
Wang, Jian [4 ]
机构
[1] Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Taiyuan Univ Technol Taiyuan, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERSECTION-THEOREMS; SIZE; SYSTEMS;
D O I
10.1016/j.ejc.2022.103589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a k-graph F subset of ([n] ), the clique number of F is defined to be the maximum size of a subset Q of [n] with (Q k ) & SUB; F. In the present paper, we determine the maximum number of edges in a k-graph on [n] with matching number at most s and clique number at least q for n < 8k2s and for q > (s + 1)k - l, n & LE; (s + 1)k + s/(3k) - l. Two special cases that q = (s + 1)k - 2 and k = 2 are solved completely. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Asymptotic enumeration of linear hypergraphs with given number of vertices and edges
    McKay, Brendan D.
    Tian, Fang
    ADVANCES IN APPLIED MATHEMATICS, 2020, 115
  • [42] ON HYPERGRAPHS WITHOUT 2 EDGES INTERSECTING IN A GIVEN NUMBER OF VERTICES
    FRANKL, P
    FUREDI, Z
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (02) : 230 - 236
  • [43] A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2
    Diao, KF
    Liu, GZ
    Rautenbach, D
    Zhao, P
    DISCRETE MATHEMATICS, 2006, 306 (07) : 670 - 672
  • [44] Maximum number of edges joining vertices on a cube
    Abdel-Ghaffar, KAS
    INFORMATION PROCESSING LETTERS, 2003, 87 (02) : 95 - 99
  • [45] MAXIMUM NUMBER OF EDGES IN A GRAPH WITHOUT TRIANGLES
    SCHWENK, AJ
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (02): : 135 - 136
  • [46] ON THE MAXIMUM NUMBER OF INDEPENDENT EDGES IN CUBIC GRAPHS
    HOBBS, AM
    SCHMEICHEL, E
    DISCRETE MATHEMATICS, 1982, 42 (2-3) : 317 - 320
  • [47] Maximum number of edges of (rKt)-free graphs
    Sun, Liang
    Yang, Gang
    Journal of Beijing Institute of Technology (English Edition), 1997, 6 (01): : 9 - 13
  • [48] On the connective eccentricity index of graphs with fixed clique number
    Wang, Xia
    Tang, Lang
    Chen, Xuesheng
    Li, Maosheng
    Li, Yin
    ARS COMBINATORIA, 2018, 138 : 105 - 117
  • [49] Pure Simplicial and Clique Complexes with a Fixed Number of Facets
    Betre, Kassahun H.
    Zhang, Yan X.
    Edmond, Carter
    arXiv,
  • [50] A note on the complexity of the maximum edge clique partitioning problem with respect to the clique number
    Sukegawa, Noriyoshi
    Miyauchi, Atsushi
    DISCRETE OPTIMIZATION, 2013, 10 (04) : 331 - 332