Resilient Hypergraphs with Fixed Matching Number

被引:0
|
作者
Peter Frankl
机构
[1] Alfréd Rényi Institute,
来源
Combinatorica | 2018年 / 38卷
关键词
05D05; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a hypergraph of rank k, that is, |H| ≦ k for all H ∈ H. Let ν(H) denote the matching number, the maximum number of pairwise disjoint edges in H. For a vertex x let H(x̄) be the hypergraph consisting of the edges H ∈ H with x ∉ H. If ν(H(x̄)) = ν(H) for all vertices, H is called resilient. The main result is the complete determination of the maximum number of 2-element sets in a resilient hypergraph with matching number s. For k=3 it is (2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document} while for k ≧ 4 the formula is k⋅(2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \cdot \left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document}. The results are used to obtain a stability theorem for k-uniform hypergraphs with given matching number.
引用
收藏
页码:1079 / 1094
页数:15
相关论文
共 50 条
  • [21] On the number of fully packed loop configurations with a fixed associated matching
    Caselli, F
    Krattenthaler, C
    Lass, B
    Nadeau, P
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 11 (02):
  • [22] On the chromatic number of geometric hypergraphs
    Smorodinsky, Shakhar
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (03) : 676 - 687
  • [23] ON THE CYCLOMATIC NUMBER OF LINEAR HYPERGRAPHS
    Tomescu, Ioan
    Bhatti, Akhlaq Ahmad
    ARS COMBINATORIA, 2012, 106 : 527 - 533
  • [24] On the chromatic number of Kneser hypergraphs
    Matousek, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) : 2509 - 2514
  • [25] DETERMINING AND DISTINGUISHING NUMBER OF HYPERGRAPHS
    Javaid, Imran
    Benish, Hira
    Haider, Azeem
    Salman, Muhammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (02): : 75 - 84
  • [26] ON THE CHROMATIC NUMBER OF THE PRODUCTS OF HYPERGRAPHS
    ZHU, XD
    ARS COMBINATORIA, 1992, 34 : 25 - 31
  • [27] On the number of A-transversals in hypergraphs
    Barat, Janos
    Gerbner, Daniel
    Halfpap, Anastasia
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (01) : 107 - 115
  • [28] THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS
    ALON, N
    FRANKL, P
    LOVASZ, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (01) : 359 - 370
  • [29] The circular chromatic number of hypergraphs
    Brewster, Richard C.
    MacGillivray, Gary
    Shepherd, Laura
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5757 - 5765
  • [30] On the choice number of random hypergraphs
    Vu, VH
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (01): : 79 - 95