Resilient Hypergraphs with Fixed Matching Number

被引:0
|
作者
Peter Frankl
机构
[1] Alfréd Rényi Institute,
来源
Combinatorica | 2018年 / 38卷
关键词
05D05; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a hypergraph of rank k, that is, |H| ≦ k for all H ∈ H. Let ν(H) denote the matching number, the maximum number of pairwise disjoint edges in H. For a vertex x let H(x̄) be the hypergraph consisting of the edges H ∈ H with x ∉ H. If ν(H(x̄)) = ν(H) for all vertices, H is called resilient. The main result is the complete determination of the maximum number of 2-element sets in a resilient hypergraph with matching number s. For k=3 it is (2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document} while for k ≧ 4 the formula is k⋅(2s+12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \cdot \left( {\begin{array}{*{20}c} {2s + 1} \\ 2 \\ \end{array} } \right)$$\end{document}. The results are used to obtain a stability theorem for k-uniform hypergraphs with given matching number.
引用
收藏
页码:1079 / 1094
页数:15
相关论文
共 50 条
  • [41] A note on the edge cover number and independence number in hypergraphs
    Berger, Eli
    Ziv, Ran
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2649 - 2654
  • [42] Sparse hypergraphs with low independence number
    Jeff Cooper
    Dhruv Mubayi
    Combinatorica, 2017, 37 : 31 - 40
  • [43] Approximability of the upper chromatic number of hypergraphs
    Bujtas, Csilla
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1714 - 1721
  • [44] Chromatic number of random Kneser hypergraphs
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 154 : 1 - 20
  • [45] Chromatic Ramsey number of acyclic hypergraphs
    Gyarfas, Andras
    Riasanovsky, Alexander W. N.
    Sherman-Bennett, Melissa U.
    DISCRETE MATHEMATICS, 2017, 340 (03) : 373 - 378
  • [46] On the chromatic number of generalized Kneser hypergraphs
    Daneshpajouh, Hamid Reza
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 81 : 150 - 155
  • [47] On the Strong Chromatic Number of Random Hypergraphs
    T. G. Matveeva
    A. E. Khuzieva
    D. A. Shabanov
    Doklady Mathematics, 2022, 105 : 31 - 34
  • [48] The number of hypergraphs without linear cycles
    Balogh, Jozsef
    Narayanan, Bhargav
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 309 - 321
  • [49] On the vertex number of almost bipartite hypergraphs
    Shabanov, D. A.
    DOKLADY MATHEMATICS, 2007, 75 (01) : 25 - 27
  • [50] The minimum number of nonnegative edges in hypergraphs
    Huang, Hao
    Sudakov, Benny
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):