On stationary points of nonexpansive set-valued mappings

被引:0
|
作者
Rafa Espínola
Meraj Hosseini
Kourosh Nourouzi
机构
[1] Universidad de Sevilla,Dpto. de Análisis Matemático, IMUS (Instituto Matemático de la Universidad de Sevilla)
[2] K. N. Toosi University of Technology,Faculty of Mathematics
关键词
stationary point; nonexpansive set-valued mapping; approximate stationary sequence; normal structure; weakly compact set; 54C60; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with stationary points (also known as endpoints) of nonexpansive set-valued mappings and show that the existence of such points under certain conditions follows as a consequence of the existence of approximate stationary sequences. In particular we provide abstract extensions of well-known fixed point theorems.
引用
收藏
相关论文
共 50 条
  • [21] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Simeon Reich
    AlexanderJ Zaslavski
    [J]. Fixed Point Theory and Applications, 2010
  • [22] Generic existence of fixed points for set-valued mappings
    Reich, S
    Zaslavski, AJ
    [J]. SET-VALUED ANALYSIS, 2002, 10 (04): : 287 - 296
  • [23] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [24] Common fixed points of compatible set-valued mappings
    Rhoades, BE
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 237 - 240
  • [25] Approximate fixed points for discontinuous set-valued mappings
    Shui-Hung Hou
    Guang Ya Chen
    [J]. Mathematical Methods of Operations Research, 1998, 48 : 201 - 206
  • [26] Generic Existence of Fixed Points for Set-Valued Mappings
    Simeon Reich
    Alexander J. Zaslavski
    [J]. Set-Valued Analysis, 2002, 10 : 287 - 296
  • [27] NONEXPANSIVE SET-VALUED MAPPINGS ON BOUNDED STAR-SHAPED SETS
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (07) : 1383 - 1392
  • [28] Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 308 (01) : 35 - 41
  • [29] Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
    A. V. Arutyunov
    E. S. Zhukovskiy
    S. E. Zhukovskiy
    [J]. Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 35 - 41
  • [30] Coincidence points of set-valued mappings in partially ordered spaces
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    [J]. DOKLADY MATHEMATICS, 2013, 88 (03) : 727 - 729