Generic Existence of Fixed Points for Set-Valued Mappings

被引:0
|
作者
Simeon Reich
Alexander J. Zaslavski
机构
[1] The Technion-Israel Institute of Technology,Department of Mathematics
来源
Set-Valued Analysis | 2002年 / 10卷
关键词
Banach space; complete metric space; fixed point; generic property; set-valued mapping;
D O I
暂无
中图分类号
学科分类号
摘要
We first consider a complete metric space of nonexpansive set-valued mappings acting on a closed convex subset of a Banach space with a nonempty interior, and show that a generic mapping in this space has a fixed point. We then establish analogous results for two complete metric spaces of set-valued mappings with convex graphs.
引用
收藏
页码:287 / 296
页数:9
相关论文
共 50 条
  • [1] Generic existence of fixed points for set-valued mappings
    Reich, S
    Zaslavski, AJ
    [J]. SET-VALUED ANALYSIS, 2002, 10 (04): : 287 - 296
  • [2] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Simeon Reich
    AlexanderJ Zaslavski
    [J]. Fixed Point Theory and Applications, 2010
  • [3] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [4] Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps
    de Blasi, Francesco S.
    Myjak, Jozef
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (01) : 97 - 112
  • [5] Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps
    Francesco S. de Blasi
    Józef Myjak
    Simeon Reich
    Alexander J. Zaslavski
    [J]. Set-Valued and Variational Analysis, 2009, 17 : 97 - 112
  • [6] FIXED AND PERIODIC POINTS UNDER SET-VALUED MAPPINGS
    TIWARY, K
    LAHIRI, BK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (08): : 717 - 727
  • [7] Approximate fixed points for discontinuous set-valued mappings
    Hou, SH
    Chen, GY
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 48 (02) : 201 - 206
  • [8] FIXED-POINTS OF NONEXPANSIVE SET-VALUED MAPPINGS
    BOSE, RK
    MUKHERJEE, RN
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (01) : 97 - 98
  • [9] Approximate fixed points for discontinuous set-valued mappings
    Shui-Hung Hou
    Guang Ya Chen
    [J]. Mathematical Methods of Operations Research, 1998, 48 : 201 - 206
  • [10] Common fixed points of compatible set-valued mappings
    Rhoades, BE
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 237 - 240