Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings

被引:3
|
作者
Arutyunov, A. V. [1 ,2 ]
Zhukovskiy, E. S. [3 ]
Zhukovskiy, S. E. [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Ul Profsoyuznaya 65, Moscow 117997, Russia
[2] Russian Acad Sci, Kharkevich Inst, Inst Informat Transmiss Problems, Bolshoi Karetnyi Per 19,Str 1, Moscow 127051, Russia
[3] Derzhavin Tambov State Univ, Int Naya Ul 33, Tambov 392000, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
COVERING MAPPINGS; METRIC-SPACES; EQUATIONS;
D O I
10.1134/S0081543820010034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider set-valued mappings acting in metric spaces and show that, under natural general assumptions, the set of coincidence points of two such mappings one of which is covering and the other is Lipschitz continuous is dense in the set of generalized coincidence points of these mappings. We use this result to study the coincidence points and generalized coincidence points of a set-valued covering mapping and a set-valued Lipschitz mapping that depend on a parameter. In particular, we obtain conditions that guarantee the existence of a coincidence point for all values of the parameter under the assumption that a coincidence point exists for one value of the parameter.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 50 条
  • [1] Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
    A. V. Arutyunov
    E. S. Zhukovskiy
    S. E. Zhukovskiy
    [J]. Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 35 - 41
  • [2] COINCIDENCE POINTS FOR SET-VALUED MAPPINGS WITH DIRECTIONAL REGULARITY
    Zhang, Binbin
    Ouyang, Wei
    [J]. FIXED POINT THEORY, 2021, 22 (01): : 391 - 405
  • [3] Coincidence points of set-valued mappings in partially ordered spaces
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    [J]. DOKLADY MATHEMATICS, 2013, 88 (03) : 727 - 729
  • [4] Coincidence points of set-valued mappings in partially ordered spaces
    A. V. Arutyunov
    E. S. Zhukovskiy
    S. E. Zhukovskiy
    [J]. Doklady Mathematics, 2013, 88 : 727 - 729
  • [5] Coincidence points principle for set-valued mappings in partially ordered spaces
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 330 - 343
  • [6] Coincidence and Fixed Points of Set-Valued Mappings Via Regularity in Metric Spaces
    Tron, Nguyen Huu
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (02)
  • [7] Coincidence and Fixed Points of Set-Valued Mappings Via Regularity in Metric Spaces
    Nguyen Huu Tron
    [J]. Set-Valued and Variational Analysis, 2023, 31
  • [8] Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
    B. D. Gel’man
    [J]. Functional Analysis and Its Applications, 2018, 52 : 139 - 143
  • [9] Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
    Gel'man, B. D.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (02) : 139 - 143
  • [10] SOME COINCIDENCE THEOREMS OF SET-VALUED MAPPINGS
    丁协平
    [J]. Applied Mathematics and Mechanics(English Edition), 1989, (03) : 205 - 212