Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems

被引:0
|
作者
Tomas Dutko
Carlo Mercuri
Teresa Megan Tyler
机构
[1] Swansea University,Department of Mathematics, Computational Foundry
关键词
Nonlinear Schrödinger–Poisson system; Weighted Sobolev spaces; Palais–Smale sequences; Compactness; Multiple solutions; Nonexistence; 35Q55; 35J20; 35B65; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear Schrödinger–Poisson system which reduces to the nonlinear and nonlocal PDE -Δu+u+λ21ω|x|N-2⋆ρu2ρ(x)u=|u|q-1ux∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - \Delta u+ u + \lambda ^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in {{\mathbb {R}}}^N, \end{aligned}$$\end{document}where ω=(N-2)|SN-1|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = (N-2)|{\mathbb {S}}^{N-1} |,$$\end{document}λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document}q∈(1,2∗-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,2^{*} -1),$$\end{document}ρ:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :{{\mathbb {R}}}^N \rightarrow {{\mathbb {R}}}$$\end{document} is nonnegative, locally bounded, and possibly non-radial, N=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3,4,5$$\end{document} and 2∗=2N/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=2N/(N-2)$$\end{document} is the critical Sobolev exponent. In our setting ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais–Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik–Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min–max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais–Smale sequences, and to the action of the group of translations.
引用
收藏
相关论文
共 50 条
  • [41] Existence of infinitely many high energy solutions for a class of fractional Schrodinger systems
    Li, Qi
    Zhao, Zengqin
    Du, Xinsheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] Solutions for a class of Schrödinger–Poisson system in bounded domains
    Ba Z.
    He X.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 287 - 297
  • [43] Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity
    Denis Bonheure
    Jean Van Schaftingen
    Annali di Matematica Pura ed Applicata, 2010, 189 : 273 - 301
  • [44] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR FRACTIONAL SCHRODINGER-POISSON SYSTEMS
    Guan, Wen
    Ma, Lu-Ping
    Wang, Da-Bin
    Zhang, Jin-Long
    QUAESTIONES MATHEMATICAE, 2021, 44 (09) : 1197 - 1207
  • [45] Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity
    Jiameng Li
    Huiwen Chen
    Zhimin He
    Zigen Ouyang
    Boundary Value Problems, 2023
  • [46] On the existence of solutions for nonlinear Schrödinger-Poisson system
    Correa, Genivaldo dos Passos
    dos Santos, Gelson C. G.
    Silva, Julio Roberto S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [47] Infinitely many homoclinic solutions for fractional discrete Kirchhoff–Schrödinger equations
    Chunming Ju
    Giovanni Molica Bisci
    Binlin Zhang
    Advances in Continuous and Discrete Models, 2023
  • [48] Infinitely many solutions for fractional Schrödinger equation with potential vanishing at infinity
    Yongzhen Yun
    Tianqing An
    Jiabin Zuo
    Dafang Zhao
    Boundary Value Problems, 2019
  • [49] Infinitely many solutions of degenerate quasilinear Schrödinger equation with general potentials
    Yan Meng
    Xianjiu Huang
    Jianhua Chen
    Boundary Value Problems, 2021
  • [50] Correction to: Infinitely many solutions for a class of fractional Schrödinger equations with sign-changing weight functions
    Yongpeng Chen
    Baoxia Jin
    Boundary Value Problems, 2023