Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems

被引:0
|
作者
Tomas Dutko
Carlo Mercuri
Teresa Megan Tyler
机构
[1] Swansea University,Department of Mathematics, Computational Foundry
关键词
Nonlinear Schrödinger–Poisson system; Weighted Sobolev spaces; Palais–Smale sequences; Compactness; Multiple solutions; Nonexistence; 35Q55; 35J20; 35B65; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear Schrödinger–Poisson system which reduces to the nonlinear and nonlocal PDE -Δu+u+λ21ω|x|N-2⋆ρu2ρ(x)u=|u|q-1ux∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - \Delta u+ u + \lambda ^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in {{\mathbb {R}}}^N, \end{aligned}$$\end{document}where ω=(N-2)|SN-1|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = (N-2)|{\mathbb {S}}^{N-1} |,$$\end{document}λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document}q∈(1,2∗-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,2^{*} -1),$$\end{document}ρ:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :{{\mathbb {R}}}^N \rightarrow {{\mathbb {R}}}$$\end{document} is nonnegative, locally bounded, and possibly non-radial, N=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3,4,5$$\end{document} and 2∗=2N/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=2N/(N-2)$$\end{document} is the critical Sobolev exponent. In our setting ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais–Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik–Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min–max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais–Smale sequences, and to the action of the group of translations.
引用
收藏
相关论文
共 50 条
  • [21] Infinitely many solutions for a class of sublinear fractional Schrödinger equations with indefinite potentials
    Wen Guan
    Da-Bin Wang
    Xinan Hao
    Journal of Inequalities and Applications, 2020
  • [22] Multiplicity of normalized solutions to a class of nonlinear fractional Schrödinger–Poisson systems with Hardy potential
    Xinsheng Du
    Shanshan Wang
    Boundary Value Problems, 2024 (1)
  • [23] Groundstates of the Schrödinger–Poisson–Slater equation with critical growth
    Chunyu Lei
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [24] Infinitely Many Small Energy Solutions to Nonlinear Kirchhoff-Schrödinger Equations with the p-Laplacian
    Kim, In Hyoun
    Kim, Yun-Ho
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (03)
  • [25] Infinitely many weak solutions for a fractional Schrödinger equation
    Wei Dong
    Jiafa Xu
    Zhongli Wei
    Boundary Value Problems, 2014
  • [26] Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
    Hongxia Shi
    Boundary Value Problems, 2019
  • [27] Positive solutions for nonlinear schrödinger–poisson systems with general nonlinearity
    Ching-yu Chen
    Tsung-fang Wu
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [28] GROUNDSTATES AND INFINITELY MANY SOLUTIONS FOR THE SCHRODINGER-POISSON EQUATION WITH MAGNETIC FIELD
    Wen, Lixi
    Zhang, Wen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022,
  • [29] GROUNDSTATES AND INFINITELY MANY SOLUTIONS FOR THE SCHRODINGER-POISSON EQUATION WITH MAGNETIC FIELD
    Wen, Lixi
    Zhang, Wen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1686 - 1700
  • [30] Remarks on infinitely many solutions for a class of Schrödinger equations with sign-changing potential
    Rong Cheng
    Yijia Wu
    Boundary Value Problems, 2020