Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems

被引:0
|
作者
Tomas Dutko
Carlo Mercuri
Teresa Megan Tyler
机构
[1] Swansea University,Department of Mathematics, Computational Foundry
关键词
Nonlinear Schrödinger–Poisson system; Weighted Sobolev spaces; Palais–Smale sequences; Compactness; Multiple solutions; Nonexistence; 35Q55; 35J20; 35B65; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear Schrödinger–Poisson system which reduces to the nonlinear and nonlocal PDE -Δu+u+λ21ω|x|N-2⋆ρu2ρ(x)u=|u|q-1ux∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - \Delta u+ u + \lambda ^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in {{\mathbb {R}}}^N, \end{aligned}$$\end{document}where ω=(N-2)|SN-1|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = (N-2)|{\mathbb {S}}^{N-1} |,$$\end{document}λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document}q∈(1,2∗-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,2^{*} -1),$$\end{document}ρ:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :{{\mathbb {R}}}^N \rightarrow {{\mathbb {R}}}$$\end{document} is nonnegative, locally bounded, and possibly non-radial, N=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3,4,5$$\end{document} and 2∗=2N/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=2N/(N-2)$$\end{document} is the critical Sobolev exponent. In our setting ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais–Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik–Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min–max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais–Smale sequences, and to the action of the group of translations.
引用
收藏
相关论文
共 50 条
  • [1] Groundstates and infinitely many high energy solutions to a class of nonlinear Schrodinger-Poisson systems
    Dutko, Tomas
    Mercuri, Carlo
    Tyler, Teresa Megan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [2] Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System
    Ke Jin
    Lushun Wang
    Journal of Dynamical and Control Systems, 2023, 29 : 1299 - 1322
  • [4] Existence of infinitely many high energy solutions for a class of fractional Schrödinger systems
    Qi Li
    Zengqin Zhao
    Xinsheng Du
    Advances in Difference Equations, 2020
  • [5] Infinitely Many Solutions for Schrödinger-Poisson Systems and Schrödinger-Kirchhoff Equations
    Liu, Shibo
    MATHEMATICS, 2024, 12 (14)
  • [6] Infinitely many geometrically distinct solutions for periodic Schrödinger–Poisson systems
    Jing Chen
    Ning Zhang
    Boundary Value Problems, 2019
  • [7] Infinitely many distributional solutions to a general kind of nonlinear fractional Schrödinger-Poisson systems
    Hamza Boutebba
    Hakim Lakhal
    Kamel Slimani
    The Journal of Analysis, 2024, 32 : 1079 - 1091
  • [8] Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system
    Zhaoli Liu
    Zhi-Qiang Wang
    Jianjun Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 775 - 794
  • [9] Infinitely many dichotomous solutions for the Schr?dinger-Poisson system
    Yuke He
    Benniao Li
    Wei Long
    Science China(Mathematics), 2024, 67 (09) : 2049 - 2070
  • [10] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (9) : 2049 - 2070