Infinitely many geometrically distinct solutions for periodic Schrödinger–Poisson systems

被引:0
|
作者
Jing Chen
Ning Zhang
机构
[1] Hunan University of Science and Technology,School of Mathematics and Computing Sciences
[2] Central South University,School of Mathematics and Statistics
来源
关键词
Schrödinger–Poisson system; Nehari manifold; Ground state; Geometrically distinct solutions; 35J10; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is dedicated to studying the following Schrödinger–Poisson system: {−△u+V(x)u+K(x)ϕ(x)u=f(x,u),x∈R3,−△ϕ=K(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} -\triangle u+V(x)u+K(x)\phi (x)u=f(x, u), \quad x\in {\mathbb {R}}^{3}, \\ -\triangle \phi =K(x)u^{2}, \quad x\in {\mathbb {R}}^{3}, \end{cases} $$\end{document} where V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document}, K(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x)$\end{document}, and f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x, u)$\end{document} are periodic in x. By using the non-Nehari manifold method, we establish the existence of ground state solutions for the above problem under some weak assumptions. Moreover, when f is odd in u, we prove that the above problem admits infinitely many geometrically distinct solutions. Our results improve and complement some related literature.
引用
收藏
相关论文
共 50 条
  • [1] Infinitely many geometrically distinct solutions for periodic Schrodinger-Poisson systems
    Chen, Jing
    Zhang, Ning
    BOUNDARY VALUE PROBLEMS, 2019,
  • [2] Infinitely Many Solutions for Schrödinger-Poisson Systems and Schrödinger-Kirchhoff Equations
    Liu, Shibo
    MATHEMATICS, 2024, 12 (14)
  • [4] Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System
    Ke Jin
    Lushun Wang
    Journal of Dynamical and Control Systems, 2023, 29 : 1299 - 1322
  • [5] Infinitely many dichotomous solutions for the Schr?dinger-Poisson system
    Yuke He
    Benniao Li
    Wei Long
    Science China(Mathematics), 2024, 67 (09) : 2049 - 2070
  • [6] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (9) : 2049 - 2070
  • [7] Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems
    Tomas Dutko
    Carlo Mercuri
    Teresa Megan Tyler
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [8] Existence of infinitely many solutions for generalized Schrödinger-Poisson system
    Liping Xu
    Haibo Chen
    Boundary Value Problems, 2014
  • [9] Infinitely many distributional solutions to a general kind of nonlinear fractional Schrödinger-Poisson systems
    Hamza Boutebba
    Hakim Lakhal
    Kamel Slimani
    The Journal of Analysis, 2024, 32 : 1079 - 1091
  • [10] Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system
    Zhaoli Liu
    Zhi-Qiang Wang
    Jianjun Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 775 - 794