Quadratic derivative nonlinear Schrödinger equations in two space dimensions

被引:0
|
作者
Fernando Bernal-Vílchis
Nakao Hayashi
Pavel I. Naumkin
机构
[1] UNAM Campus Morelia,Instituto de Matemáticas
[2] Osaka University,Department of Mathematics, Graduate School of Science
关键词
Primary 35Q35; Nonlinear Schrödinger equations; Global existence; Quadratic nonlinearities; Two spatial dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$$\end{document}where the quadratic nonlinearity has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbf{C}}$$\end{document}. We prove that if the initial data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{0}\in \mathbf{H}^{6}\cap \mathbf{H}^{3,3}}$$\end{document} satisfy smallness conditions in the weighted Sobolev norm, then the solution of the Cauchy problem (0.1) exists globally in time. Furthermore we prove the existence of the usual scattering states. The proof depends on the energy type estimates, smoothing property by Doi, and method of normal forms by Shatah.
引用
收藏
页码:329 / 355
页数:26
相关论文
共 50 条
  • [41] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [42] Modified Wave Operators for Maxwell-Schrödinger Equations in Three Space Dimensions
    Akihiro Shimomura
    Annales Henri Poincaré, 2003, 4 : 661 - 683
  • [43] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [44] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [45] On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations
    Scipio Cuccagna
    Tetsu Mizumachi
    Communications in Mathematical Physics, 2008, 284
  • [46] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [47] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [48] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [49] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [50] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265