Quadratic derivative nonlinear Schrödinger equations in two space dimensions

被引:0
|
作者
Fernando Bernal-Vílchis
Nakao Hayashi
Pavel I. Naumkin
机构
[1] UNAM Campus Morelia,Instituto de Matemáticas
[2] Osaka University,Department of Mathematics, Graduate School of Science
关键词
Primary 35Q35; Nonlinear Schrödinger equations; Global existence; Quadratic nonlinearities; Two spatial dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$$\end{document}where the quadratic nonlinearity has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbf{C}}$$\end{document}. We prove that if the initial data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{0}\in \mathbf{H}^{6}\cap \mathbf{H}^{3,3}}$$\end{document} satisfy smallness conditions in the weighted Sobolev norm, then the solution of the Cauchy problem (0.1) exists globally in time. Furthermore we prove the existence of the usual scattering states. The proof depends on the energy type estimates, smoothing property by Doi, and method of normal forms by Shatah.
引用
收藏
页码:329 / 355
页数:26
相关论文
共 50 条
  • [21] Statistical Approach of Modulational Instability in the Class of Derivative Nonlinear Schrödinger Equations
    A. T. Grecu
    D. Grecu
    Anca Visinescu
    International Journal of Theoretical Physics, 2007, 46 : 1190 - 1204
  • [22] Numerical Simulation of Nonlinear Schrödinger Equation in One and Two Dimensions
    Geeta Arora
    Joshi V.
    Mittal R.C.
    Mathematical Models and Computer Simulations, 2019, 11 (4) : 634 - 648
  • [23] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [24] Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space
    Valeria Banica
    Rémi Carles
    Gigliola Staffilani
    Geometric and Functional Analysis, 2008, 18 : 367 - 399
  • [25] Almost Global Solutions to Hamiltonian Derivative Nonlinear Schrödinger Equations on the Circle
    Jing Zhang
    Journal of Dynamics and Differential Equations, 2020, 32 : 1401 - 1455
  • [26] Breather and rogue wave solutions of coupled derivative nonlinear Schrödinger equations
    Xiao-Shuo Xiang
    Da-Wei Zuo
    Nonlinear Dynamics, 2022, 107 : 1195 - 1204
  • [27] Blow-up results for systems of nonlinear Schrödinger equations with quadratic interaction
    Van Duong Dinh
    Luigi Forcella
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [28] Analytic smoothing effect for global solutions to a quadratic system of nonlinear Schrödinger equations
    Gaku Hoshino
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [29] Correction to: Propagation of Exponential Phase Space Singularities for Schrödinger Equations with Quadratic Hamiltonians
    Evanthia Carypis
    Patrik Wahlberg
    Journal of Fourier Analysis and Applications, 2021, 27
  • [30] Collapse dynamics for two-dimensional space-time nonlocal nonlinear Schrödinger equations
    Cole, Justin T.
    Aurko, Abdullah M.
    Musslimani, Ziad H.
    NONLINEARITY, 2024, 37 (04)