Rigidity theorems for hypersurfaces with constant mean curvature

被引:0
|
作者
Josué Meléndez
机构
[1] Facultad de Ciencias,Departamento de Matemáticas
[2] UNAM,Departamento de Matemáticas
[3] Universidad de Murcia,undefined
关键词
constant mean curvature; hypersurfaces; product of spheres; isoparametric hypersurfaces; 53C42; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn be a compact oriented hypersurface of a unit sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^{n + 1} $\end{document}(1) with constant mean curvature H. Given an integer k between 2 and n − 1, we introduce a tensor ⌽ related to H and to the second fundamental form A of M, and show that if |⌽|2 ≤ BH,k and tr(⌽3) ≤ Cn,k |⌽|3, where BH,k and Cn,k are numbers depending only on H, n and k, then either |⌽|2 ≡ 0 or |⌽|2 ≡ BH,k. We characterize all Mn with |⌽|2 ≡ BH,k. We also prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| A \right|^2 \leqslant 2\sqrt {k(n - k)}$$\end{document} and tr(⌽3) ≤ Cn,k |⌽|3 then |A|2 is constant and characterize all Mn with |A|2 in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {0,2\sqrt {k\left( {n - k} \right)} } \right] $$\end{document}.
引用
收藏
页码:385 / 404
页数:19
相关论文
共 50 条
  • [31] Weakly stable constant mean curvature hypersurfaces
    Fu Hai-ping
    Xu Hong-wei
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) : 119 - 126
  • [32] Hypersurfaces of Randers Spaces with Constant Mean Curvature
    Li, Jintang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 979 - 996
  • [33] Constant mean curvature hypersurfaces in Riemannian manifolds
    Pacard, Frank
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2005, 4 : 141 - 162
  • [34] Hypersurfaces with constant mth mean curvature in the spheres
    Wei, Guoxin
    Wen, Guohua
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 104 : 121 - 127
  • [35] On affine translation hypersurfaces of constant mean curvature
    Sun, HF
    Chen, C
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 381 - 390
  • [36] Index growth of hypersurfaces with constant mean curvature
    Pierre Bérard
    Levi Lopes de Lima
    Wayne Rossman
    [J]. Mathematische Zeitschrift, 2002, 239 : 99 - 115
  • [37] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) : 339 - 353
  • [38] HYPERSURFACES WITH CONSTANT EQUIAFFINE MEAN-CURVATURE
    SCHWENK, A
    SIMON, U
    [J]. ARCHIV DER MATHEMATIK, 1986, 46 (01) : 85 - 90
  • [39] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    ESCHENBURG, J
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1986, 58 (03): : 502 - 502
  • [40] Hypersurfaces with constant mean curvature of hyperbolic space
    Polombo, A
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (03) : 579 - 588