A New Upper Bound for Sampling Numbers

被引:0
|
作者
Nicolas Nagel
Martin Schäfer
Tino Ullrich
机构
[1] TU Chemnitz,Faculty of Mathematics
关键词
Sampling recovery; Least squares approximation; Random sampling; Weaver’s conjecture; Finite frames; Kadison–Singer problem; 41A25; 41A63; 68Q25; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new upper bound for sampling numbers (gn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_n)_{n\in \mathbb {N}}$$\end{document} associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants C,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C,c>0$$\end{document} (which are specified in the paper) such that gn2≤Clog(n)n∑k≥⌊cn⌋σk2,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$\end{document}where (σk)k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma _k)_{k\in \mathbb {N}}$$\end{document} is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding Id:H(K)→L2(D,ϱD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$\end{document}. The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of Hmixs(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s_{\text {mix}}(\mathbb {T}^d)$$\end{document} in L2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\mathbb {T}^d)$$\end{document} with s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document}. We obtain the asymptotic bound gn≤Cs,dn-slog(n)(d-1)s+1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$\end{document}which improves on very recent results by shortening the gap between upper and lower bound to log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log (n)}$$\end{document}. The result implies that for dimensions d>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2$$\end{document} any sparse grid sampling recovery method does not perform asymptotically optimal.
引用
收藏
页码:445 / 468
页数:23
相关论文
共 50 条
  • [41] New upper bounds for Ramsey numbers
    Ru, HY
    Min, ZK
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 391 - 394
  • [42] SHARPER VARIANCE UPPER BOUND FOR UNBIASED ESTIMATION IN INVERSE SAMPLING
    PRASAD, G
    SAHAI, A
    BIOMETRIKA, 1982, 69 (01) : 286 - 286
  • [43] A NEW LOWER BOUND FOR ODD PERFECT NUMBERS
    BRENT, RP
    COHEN, GL
    MATHEMATICS OF COMPUTATION, 1989, 53 (187) : 431 - 437
  • [44] New upper bound for sums of dilates
    Bush, Albert
    Zhao, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [45] New upper bound heuristics for treewidth
    Bachoore, EH
    Bodlaender, HL
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2005, 3503 : 216 - 227
  • [46] A NEW UPPER BOUND FOR |ζ (1+it)|
    Trudgian, Timothy
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) : 259 - 264
  • [47] A new upper bound for the green matrix
    Nechepurenko, Yu.M.
    Doklady Akademii Nauk, 2001, 378 (04) : 450 - 452
  • [48] A new upper bound on the queuenumber of hypercubes
    Pai, Kung-Jui
    Chang, Jou-Ming
    Wang, Yue-Li
    DISCRETE MATHEMATICS, 2010, 310 (04) : 935 - 939
  • [49] A New Upper Bound for Cancellative Pairs
    Janzer, Barnabas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [50] A NEW UPPER BOUND FOR THE LENGTH OF SNAKES
    DEIMER, K
    COMBINATORICA, 1985, 5 (02) : 109 - 120