A New Upper Bound for Sampling Numbers

被引:0
|
作者
Nicolas Nagel
Martin Schäfer
Tino Ullrich
机构
[1] TU Chemnitz,Faculty of Mathematics
关键词
Sampling recovery; Least squares approximation; Random sampling; Weaver’s conjecture; Finite frames; Kadison–Singer problem; 41A25; 41A63; 68Q25; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new upper bound for sampling numbers (gn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_n)_{n\in \mathbb {N}}$$\end{document} associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants C,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C,c>0$$\end{document} (which are specified in the paper) such that gn2≤Clog(n)n∑k≥⌊cn⌋σk2,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$\end{document}where (σk)k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma _k)_{k\in \mathbb {N}}$$\end{document} is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding Id:H(K)→L2(D,ϱD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$\end{document}. The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of Hmixs(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s_{\text {mix}}(\mathbb {T}^d)$$\end{document} in L2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\mathbb {T}^d)$$\end{document} with s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document}. We obtain the asymptotic bound gn≤Cs,dn-slog(n)(d-1)s+1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$\end{document}which improves on very recent results by shortening the gap between upper and lower bound to log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log (n)}$$\end{document}. The result implies that for dimensions d>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2$$\end{document} any sparse grid sampling recovery method does not perform asymptotically optimal.
引用
收藏
页码:445 / 468
页数:23
相关论文
共 50 条
  • [31] An improved upper bound for signed edge domination numbers in graphs
    Karami, H.
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    UTILITAS MATHEMATICA, 2009, 78 : 121 - 128
  • [32] AN IMPROVED UPPER BOUND FOR THE DISCREPANCY OF QUADRATIC CONGRUENTIAL PSEUDORANDOM NUMBERS
    EICHENAUERHERRMANN, J
    NIEDERREITER, H
    ACTA ARITHMETICA, 1995, 69 (02) : 193 - 198
  • [33] Upper bound and formula for class numbers of Abelian function fields
    Ma, Lianrong
    Zhang, Xianke
    Progress in Natural Science, 2006, 16 (03) : 321 - 323
  • [34] The upper bound on k-tuple domination numbers of graphs
    Chang, Gerard J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1333 - 1336
  • [35] UPPER BOUND OF THE CARDINALITY OF E-POWERED NUMBERS OF DIGITS
    Jeong, Kyung Ho
    So, Jisuk
    Kim, Soeun
    Kim, Daeyeoul
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 419 - 428
  • [36] Improved upper bound for the degenerate and star chromatic numbers of graphs
    Cai, Jiansheng
    Li, Xueliang
    Yan, Guiying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 441 - 452
  • [37] Improved upper bound for the degenerate and star chromatic numbers of graphs
    Jiansheng Cai
    Xueliang Li
    Guiying Yan
    Journal of Combinatorial Optimization, 2017, 34 : 441 - 452
  • [38] AN UPPER BOUND FOR THE TRANSVERSAL NUMBERS OF 4-UNIFORM HYPERGRAPHS
    LAI, FC
    CHANG, GJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 50 (01) : 129 - 133
  • [39] Upper bound and formula for class numbers of abelian function fields
    Ma, LR
    Zhang, XK
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (03) : 321 - 323
  • [40] A NEW UPPER BOUND FOR ODD PERFECT NUMBERS OF A SPECIAL FORM (vol 156, pg 15, 2019)
    Yamada, Tomohiro
    COLLOQUIUM MATHEMATICUM, 2020, 162 (02) : 311 - 313