A New Upper Bound for Sampling Numbers

被引:0
|
作者
Nicolas Nagel
Martin Schäfer
Tino Ullrich
机构
[1] TU Chemnitz,Faculty of Mathematics
关键词
Sampling recovery; Least squares approximation; Random sampling; Weaver’s conjecture; Finite frames; Kadison–Singer problem; 41A25; 41A63; 68Q25; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new upper bound for sampling numbers (gn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_n)_{n\in \mathbb {N}}$$\end{document} associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants C,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C,c>0$$\end{document} (which are specified in the paper) such that gn2≤Clog(n)n∑k≥⌊cn⌋σk2,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$\end{document}where (σk)k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma _k)_{k\in \mathbb {N}}$$\end{document} is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding Id:H(K)→L2(D,ϱD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$\end{document}. The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of Hmixs(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s_{\text {mix}}(\mathbb {T}^d)$$\end{document} in L2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\mathbb {T}^d)$$\end{document} with s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document}. We obtain the asymptotic bound gn≤Cs,dn-slog(n)(d-1)s+1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$\end{document}which improves on very recent results by shortening the gap between upper and lower bound to log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log (n)}$$\end{document}. The result implies that for dimensions d>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2$$\end{document} any sparse grid sampling recovery method does not perform asymptotically optimal.
引用
收藏
页码:445 / 468
页数:23
相关论文
共 50 条
  • [21] An upper bound for total domination subdivision numbers
    Karami, H.
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    ARS COMBINATORIA, 2011, 102 : 321 - 331
  • [22] AN UPPER BOUND ON THE RAMSEY NUMBERS R(3, K)
    GRIGGS, JR
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 35 (02) : 145 - 153
  • [23] ADDITION TO 'AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS'
    Yuan, Pingzhi
    Zhang, Zhongfeng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 5 - 7
  • [24] An exponential-type upper bound for Folkman numbers
    Vojtěch Rödl
    Andrzej Ruciński
    Mathias Schacht
    Combinatorica, 2017, 37 : 767 - 784
  • [25] AN EXPONENTIAL-TYPE UPPER BOUND FOR FOLKMAN NUMBERS
    Rodl, Vojtech
    Rucinski, Andrzej
    Schacht, Mathias
    COMBINATORICA, 2017, 37 (04) : 767 - 784
  • [26] A new upper bound on Ruzsa's numbers on the Erdős-Turán conjecture
    Ding, Yuchen
    Zhao, Lilu
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (06) : 1515 - 1523
  • [27] A new entropy upper bound
    Tapus, N.
    Popescu, P. G.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1887 - 1890
  • [28] A NEW UPPER BOUND FOR SHELLSORT
    SEDGEWICK, R
    JOURNAL OF ALGORITHMS, 1986, 7 (02) : 159 - 173
  • [29] Upper bound and formula for class numbers of abelian function fields
    MA Lianrong and ZHANG Xianke (Department of Mathematical Sciences
    ProgressinNaturalScience, 2006, (03) : 321 - 323
  • [30] On equality in an upper bound for the restrained and total domination numbers of a graph
    Dankelmann, Peter
    Day, David
    Hattingh, Johannes H.
    Henning, Michael A.
    Markus, Lisa R.
    Swart, Henda C.
    DISCRETE MATHEMATICS, 2007, 307 (22) : 2845 - 2852