A New Upper Bound for Sampling Numbers

被引:0
|
作者
Nicolas Nagel
Martin Schäfer
Tino Ullrich
机构
[1] TU Chemnitz,Faculty of Mathematics
关键词
Sampling recovery; Least squares approximation; Random sampling; Weaver’s conjecture; Finite frames; Kadison–Singer problem; 41A25; 41A63; 68Q25; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new upper bound for sampling numbers (gn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_n)_{n\in \mathbb {N}}$$\end{document} associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants C,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C,c>0$$\end{document} (which are specified in the paper) such that gn2≤Clog(n)n∑k≥⌊cn⌋σk2,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$\end{document}where (σk)k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma _k)_{k\in \mathbb {N}}$$\end{document} is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding Id:H(K)→L2(D,ϱD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$\end{document}. The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of Hmixs(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s_{\text {mix}}(\mathbb {T}^d)$$\end{document} in L2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\mathbb {T}^d)$$\end{document} with s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document}. We obtain the asymptotic bound gn≤Cs,dn-slog(n)(d-1)s+1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$\end{document}which improves on very recent results by shortening the gap between upper and lower bound to log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log (n)}$$\end{document}. The result implies that for dimensions d>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2$$\end{document} any sparse grid sampling recovery method does not perform asymptotically optimal.
引用
收藏
页码:445 / 468
页数:23
相关论文
共 50 条
  • [1] A New Upper Bound for Sampling Numbers
    Nagel, Nicolas
    Schaefer, Martin
    Ullrich, Tino
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 445 - 468
  • [2] A sharp upper bound for sampling numbers in L2
    Dolbeault, Matthieu
    Krieg, David
    Ulrich, Mario
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 63 : 113 - 134
  • [3] New upper bound on vertex Folkman numbers
    Dudek, Andrzej
    Rodl, Vojtech
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 473 - 478
  • [4] A new upper bound for diagonal Ramsey numbers
    Conlon, David
    ANNALS OF MATHEMATICS, 2009, 170 (02) : 941 - 960
  • [5] New upper bound formulas with parameters for Ramsey numbers
    Huang, Yiru
    Wang, Yuandi
    Sheng, Wancheng
    Yang, Jiansheng
    Zhang, Kemin
    Huang, Jian
    DISCRETE MATHEMATICS, 2007, 307 (06) : 760 - 763
  • [6] New upper bound for a class of vertex Folkman numbers
    Kolev, N
    Nenov, N
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] A new upper bound for numbers with the Lehmer property and its application to repunit numbers
    Burek, Dominik
    Zmija, Blazej
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (07) : 1463 - 1468
  • [8] AN UPPER BOUND FOR RAMSEY NUMBERS
    GRAVER, JE
    YACKEL, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (06) : 1076 - &
  • [9] An upper bound for Ramsey numbers
    Li, YS
    Rousseau, CC
    Zang, WN
    APPLIED MATHEMATICS LETTERS, 2004, 17 (06) : 663 - 665
  • [10] A NEW UPPER BOUND FOR ODD PERFECT NUMBERS OF A SPECIAL FORM
    Yamada, Tomohiro
    COLLOQUIUM MATHEMATICUM, 2019, 156 (01) : 15 - 23