Mass distributions of two-dimensional extreme-value copulas and related results

被引:0
|
作者
Wolfgang Trutschnig
Manuela Schreyer
Juan Fernández-Sánchez
机构
[1] University Salzburg,Department for Mathematics
[2] Universidad de Almería,Grupo de Investigación de Análisis Matemático
来源
Extremes | 2016年 / 19卷
关键词
Extreme-value copula; Pickands dependence function; Markov kernel; Singular measure; Extreme points; 62H20; 62G32; 60E05; 26A30;
D O I
暂无
中图分类号
学科分类号
摘要
Working with Markov kernels (conditional distributions) and right-hand derivatives D+A of Pickands dependence functions A we study the way two-dimensional extreme-value copulas (EVCs) CA distribute mass. Underlining the usefulness of working directly with D+A, we give first an alternative simple proof of the fact that EVCs with piecewise linear A can be expressed as weighted geometric mean of some EVCs whose dependence functions A have at most two edges and present a generalization of this result. After showing that the discrete component of the Markov kernel of CA concentrates its mass on the graphs of some increasing homeomorphisms ft, we determine which EVC assigns maximum mass to the union of the graphs of ft1,…,ftN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{t_{1}},\ldots ,f_{t_{N}}$\end{document}, derive the absolutely continuous component of an arbitrary EVC CA and deduce that the minimum copula M is the only (purely) singular EVC. Additionally, we prove the existence of EVCs CA which, despite their simple analytic form, exhibit the following surprisingly singular behavior: the discrete, the absolutely continuous and the singular component of the Lebesgue decomposition of the Markov kernel KCA(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{C_{A}}(x,\cdot )$\end{document} of CA have full support [0,1] for every x∈[0,1].
引用
收藏
页码:405 / 427
页数:22
相关论文
共 50 条
  • [1] Mass distributions of two-dimensional extreme-value copulas and related results
    Trutschnig, Wolfgang
    Schreyer, Manuela
    Fernandez-Sanchez, Juan
    [J]. EXTREMES, 2016, 19 (03) : 405 - 427
  • [2] Conditional normal extreme-value copulas
    Pavel Krupskii
    Marc G. Genton
    [J]. Extremes, 2021, 24 : 403 - 431
  • [3] On the structure of exchangeable extreme-value copulas
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 180
  • [4] Conditional normal extreme-value copulas
    Krupskii, Pavel
    Genton, Marc G.
    [J]. EXTREMES, 2021, 24 (03) : 403 - 431
  • [5] Nonparametric estimation of multivariate extreme-value copulas
    Gudendorf, Gordon
    Segers, Johan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3073 - 3085
  • [6] Statistical properties of couples of bivariate extreme-value copulas
    Ghoudi, K
    Khoudraji, A
    Rivest, LP
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 187 - 197
  • [7] EXTREME-VALUE DISTRIBUTIONS IN CHAOTIC DYNAMICS
    BALAKRISHNAN, V
    NICOLIS, C
    NICOLIS, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 307 - 336
  • [8] Extreme-value distributions and renormalization group
    Calvo, Ivan
    Cuchi, Juan C.
    Esteve, J. G.
    Falceto, Fernando
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [9] A goodness-of-fit test for bivariate extreme-value copulas
    Genest, Christian
    Kojadinovic, Ivan
    Neslehova, Johanna
    Yan, Jun
    [J]. BERNOULLI, 2011, 17 (01) : 253 - 275
  • [10] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. EXTREMES, 2011, 14 (03) : 311 - 324