Mass distributions of two-dimensional extreme-value copulas and related results

被引:0
|
作者
Wolfgang Trutschnig
Manuela Schreyer
Juan Fernández-Sánchez
机构
[1] University Salzburg,Department for Mathematics
[2] Universidad de Almería,Grupo de Investigación de Análisis Matemático
来源
Extremes | 2016年 / 19卷
关键词
Extreme-value copula; Pickands dependence function; Markov kernel; Singular measure; Extreme points; 62H20; 62G32; 60E05; 26A30;
D O I
暂无
中图分类号
学科分类号
摘要
Working with Markov kernels (conditional distributions) and right-hand derivatives D+A of Pickands dependence functions A we study the way two-dimensional extreme-value copulas (EVCs) CA distribute mass. Underlining the usefulness of working directly with D+A, we give first an alternative simple proof of the fact that EVCs with piecewise linear A can be expressed as weighted geometric mean of some EVCs whose dependence functions A have at most two edges and present a generalization of this result. After showing that the discrete component of the Markov kernel of CA concentrates its mass on the graphs of some increasing homeomorphisms ft, we determine which EVC assigns maximum mass to the union of the graphs of ft1,…,ftN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{t_{1}},\ldots ,f_{t_{N}}$\end{document}, derive the absolutely continuous component of an arbitrary EVC CA and deduce that the minimum copula M is the only (purely) singular EVC. Additionally, we prove the existence of EVCs CA which, despite their simple analytic form, exhibit the following surprisingly singular behavior: the discrete, the absolutely continuous and the singular component of the Lebesgue decomposition of the Markov kernel KCA(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{C_{A}}(x,\cdot )$\end{document} of CA have full support [0,1] for every x∈[0,1].
引用
收藏
页码:405 / 427
页数:22
相关论文
共 50 条
  • [11] Some results on shuffles of two-dimensional copulas
    Trutschnig, Wolfgang
    Fernandez Sanchez, Juan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (02) : 251 - 260
  • [12] RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS
    Genest, Christian
    Segers, Johan
    ANNALS OF STATISTICS, 2009, 37 (5B): : 2990 - 3022
  • [13] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Jan-Frederik Mai
    Matthias Scherer
    Extremes, 2011, 14 : 311 - 324
  • [14] Mixture of extreme-value distributions: identifiability and estimation
    Otiniano, C. E. G.
    Goncalves, C. R.
    Dorea, C. C. Y.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6528 - 6542
  • [16] Extreme-value distributions in probabilistic risk assessment
    Lambert, JH
    Haimes, YY
    PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT (PSAM 4), VOLS 1-4, 1998, : 1241 - 1244
  • [17] Large-sample tests of extreme-value dependence for multivariate copulas
    Kojadinovic, Ivan
    Segers, Johan
    Yan, Jun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 703 - 720
  • [18] Extreme-Value Distributions and the Freezing Transition of Structural Glasses
    Castellana, Michele
    PHYSICAL REVIEW LETTERS, 2014, 112 (21)
  • [19] Detecting breaks in the dependence of multivariate extreme-value distributions
    Axel Bücher
    Paul Kinsvater
    Ivan Kojadinovic
    Extremes, 2017, 20 : 53 - 89
  • [20] Estimation of the data region using extreme-value distributions
    Watanabe, K
    Watanabe, S
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2004, 3244 : 206 - 220