Bivariate extreme-value copulas with discrete Pickands dependence measure

被引:12
|
作者
Mai, Jan-Frederik [1 ]
Scherer, Matthias [1 ]
机构
[1] Tech Univ Munich, HVB Inst Math Finance, D-85748 Garching, Germany
关键词
Extreme-value copula; Pickands dependence measure; Dependence function;
D O I
10.1007/s10687-010-0112-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A two-parametric family of bivariate extreme-value copulas (EVCs), which corresponds to precisely the bivariate EVCs whose Pickands dependence measure is discrete with at most two atoms, is introduced and analyzed. It is shown how bivariate EVCs with arbitrary discrete Pickands dependence measure can be represented as the geometric mean of such basis copulas. General bivariate EVCs can thus be represented as the limit of this construction when the number of involved basis copulas tends to infinity. Besides the theoretical value of such a representation, it is shown how several properties of the represented copula can be deduced from properties of the involved basis copulas. An algorithm for the computation of the representation is given.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 50 条
  • [1] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Jan-Frederik Mai
    Matthias Scherer
    [J]. Extremes, 2011, 14 : 311 - 324
  • [2] ON THE LIMITING BEHAVIOR OF THE PICKANDS ESTIMATOR FOR BIVARIATE EXTREME-VALUE DISTRIBUTIONS
    DEHEUVELS, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) : 429 - 439
  • [3] Statistical properties of couples of bivariate extreme-value copulas
    Ghoudi, K
    Khoudraji, A
    Rivest, LP
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 187 - 197
  • [4] NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE
    Buecher, Axel
    Dette, Holger
    Volgushev, Stanislav
    [J]. ANNALS OF STATISTICS, 2011, 39 (04): : 1963 - 2006
  • [5] A goodness-of-fit test for bivariate extreme-value copulas
    Genest, Christian
    Kojadinovic, Ivan
    Neslehova, Johanna
    Yan, Jun
    [J]. BERNOULLI, 2011, 17 (01) : 253 - 275
  • [6] RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS
    Genest, Christian
    Segers, Johan
    [J]. ANNALS OF STATISTICS, 2009, 37 (5B): : 2990 - 3022
  • [7] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Cormier, Eric
    Genest, Christian
    Neslehova, Johanna G.
    [J]. EXTREMES, 2014, 17 (04) : 633 - 659
  • [8] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Eric Cormier
    Christian Genest
    Johanna G. Nešlehová
    [J]. Extremes, 2014, 17 : 633 - 659
  • [9] The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas
    Bonazzi, A.
    Cusack, S.
    Mitas, C.
    Jewson, S.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2012, 12 (05) : 1769 - 1782
  • [10] A Bayesian estimator for the dependence function of a bivariate extreme-value distribution
    Guillotte, Simon
    Perron, Francois
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (03): : 383 - 396