NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE

被引:44
|
作者
Buecher, Axel [1 ]
Dette, Holger [1 ]
Volgushev, Stanislav [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
ANNALS OF STATISTICS | 2011年 / 39卷 / 04期
关键词
Extreme-value copula; minimum distance estimation; Pickands dependence function; weak convergence; empirical copula process; test for extreme-value dependence; VALUE DISTRIBUTIONS; NONPARAMETRIC-ESTIMATION; VALUE COPULAS; MODELS;
D O I
10.1214/11-AOS890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new class of estimators for Pickands dependence function which is based on the concept of minimum distance estimation. An explicit integral representation of the function A* (t), which minimizes a weighted L(2)-distance between the logarithm of the copula C(y(1-t), y(t)) and functions of the form A (t) log(y) is derived. If the unknown copula is an extreme-value copula, the function A* (t) coincides with Pickands dependence function. Moreover, even if this is not the case, the function A* (t) always satisfies the boundary conditions of a Pickands dependence function. The estimators are obtained by replacing the unknown copula by its empirical counterpart and weak convergence of the corresponding process is shown. A comparison with the commonly used estimators is performed from a theoretical point of view and by means of a simulation study. Our asymptotic and numerical results indicate that some of the new estimators outperform the estimators, which were recently proposed by Genest and Segers [Ann. Statist. 37 (2009) 2990-3022]. As a by-product of our results, we obtain a simple test for the hypothesis of an extreme-value copula, which is consistent against all positive quadrant dependent alternatives satisfying weak differentiability assumptions of first order.
引用
收藏
页码:1963 / 2006
页数:44
相关论文
共 50 条
  • [1] Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence
    Berghaus, Betina
    Buecher, Axel
    Dette, Holger
    [J]. JOURNAL OF THE SFDS, 2013, 154 (01): : 116 - 137
  • [2] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Jan-Frederik Mai
    Matthias Scherer
    [J]. Extremes, 2011, 14 : 311 - 324
  • [3] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. EXTREMES, 2011, 14 (03) : 311 - 324
  • [4] A moment-based test for extreme-value dependence
    Du, Yeting
    Neslehova, Johanna
    [J]. METRIKA, 2013, 76 (05) : 673 - 695
  • [5] A moment-based test for extreme-value dependence
    Yeting Du
    Johanna Nešlehová
    [J]. Metrika, 2013, 76 : 673 - 695
  • [6] On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence
    Ben Ghorbal, Noomen
    Genest, Christian
    Neslehova, Johanna
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 534 - 552
  • [7] Weighted estimation of the dependence function for an extreme-value distribution
    Peng, Liang
    Qian, Linyi
    Yang, Jingping
    [J]. BERNOULLI, 2013, 19 (02) : 492 - 520
  • [8] A Bayesian estimator for the dependence function of a bivariate extreme-value distribution
    Guillotte, Simon
    Perron, Francois
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (03): : 383 - 396
  • [9] Bayes estimators for the extreme-value reliability function
    Elkahlout, GR
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (3-4) : 673 - 679
  • [10] Projection estimators of Pickands dependence functions
    Fils-Villetard, Amelie
    Guillou, Armelle
    Segers, Johan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (03): : 369 - 382