Mass distributions of two-dimensional extreme-value copulas and related results

被引:18
|
作者
Trutschnig, Wolfgang [1 ]
Schreyer, Manuela [1 ]
Fernandez-Sanchez, Juan [2 ]
机构
[1] Salzburg Univ, Dept Math, Hellbrunnerstr 34, A-5020 Salzburg, Austria
[2] Univ Almeria, Grp Invest Anal Matemat, La Canada De San Urbano, Almeria, Spain
关键词
Extreme-value copula; Pickands dependence function; Markov kernel; Singular measure; Extreme points;
D O I
10.1007/s10687-016-0249-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Working with Markov kernels (conditional distributions) and right-hand derivatives D+ A of Pickands dependence functions A we study the way two-dimensional extreme-value copulas (EVCs) C-A distribute mass. Underlining the usefulness of working directly with D+ A, we give first an alternative simple proof of the fact that EVCs with piecewise linear A can be expressed as weighted geometric mean of some EVCs whose dependence functions A have at most two edges and present a generalization of this result. After showing that the discrete component of the Markov kernel of C-A concentrates its mass on the graphs of some increasing homeomorphisms f(t), we determine which EVC assigns maximum mass to the union of the graphs of f(t1),..., f(tN), derive the absolutely continuous component of an arbitrary EVC C-A and deduce that the minimum copula M is the only (purely) singular EVC. Additionally, we prove the existence of EVCs C-A which, despite their simple analytic form, exhibit the following surprisingly singular behavior: the discrete, the absolutely continuous and the singular component of the Lebesgue decomposition of the Markov kernel K-CA (x, .) of C-A have full support [0, 1] for every x is an element of [0, 1].
引用
下载
收藏
页码:405 / 427
页数:23
相关论文
共 50 条
  • [1] Mass distributions of two-dimensional extreme-value copulas and related results
    Wolfgang Trutschnig
    Manuela Schreyer
    Juan Fernández-Sánchez
    Extremes, 2016, 19 : 405 - 427
  • [2] Conditional normal extreme-value copulas
    Pavel Krupskii
    Marc G. Genton
    Extremes, 2021, 24 : 403 - 431
  • [3] On the structure of exchangeable extreme-value copulas
    Mai, Jan-Frederik
    Scherer, Matthias
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 180
  • [4] Conditional normal extreme-value copulas
    Krupskii, Pavel
    Genton, Marc G.
    EXTREMES, 2021, 24 (03) : 403 - 431
  • [5] Nonparametric estimation of multivariate extreme-value copulas
    Gudendorf, Gordon
    Segers, Johan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3073 - 3085
  • [6] Statistical properties of couples of bivariate extreme-value copulas
    Ghoudi, K
    Khoudraji, A
    Rivest, LP
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 187 - 197
  • [7] EXTREME-VALUE DISTRIBUTIONS IN CHAOTIC DYNAMICS
    BALAKRISHNAN, V
    NICOLIS, C
    NICOLIS, G
    JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 307 - 336
  • [8] Extreme-value distributions and renormalization group
    Calvo, Ivan
    Cuchi, Juan C.
    Esteve, J. G.
    Falceto, Fernando
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [9] A goodness-of-fit test for bivariate extreme-value copulas
    Genest, Christian
    Kojadinovic, Ivan
    Neslehova, Johanna
    Yan, Jun
    BERNOULLI, 2011, 17 (01) : 253 - 275
  • [10] Bivariate extreme-value copulas with discrete Pickands dependence measure
    Mai, Jan-Frederik
    Scherer, Matthias
    EXTREMES, 2011, 14 (03) : 311 - 324