Stability estimates and structural spectral properties of saddle point problems

被引:0
|
作者
Wolfgang Krendl
Valeria Simoncini
Walter Zulehner
机构
[1] Johannes Kepler University Linz,Doctoral Program Computational Mathematics
[2] Università di Bologna,Dipartimento di Matematica
[3] Johannes Kepler University Linz,Institute of Computational Mathematics
来源
Numerische Mathematik | 2013年 / 124卷
关键词
65F08; 65N22; 65K10; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stability constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported.
引用
收藏
页码:183 / 213
页数:30
相关论文
共 50 条
  • [41] EIGENVALUE ESTIMATES FOR PRECONDITIONED NONSYMMETRIC SADDLE POINT MATRICES
    Shen, Shu-Qian
    Huang, Ting-Zhu
    Yu, Juan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2453 - 2476
  • [42] A NEW PRACTICAL FRAMEWORK FOR THE STABILITY ANALYSIS OF PERTURBED SADDLE-POINT PROBLEMS AND APPLICATIONS
    Hong, Qingguo
    Kraus, Johannes
    Lymbery, Maria
    Philo, Fadi
    MATHEMATICS OF COMPUTATION, 2023, 92 (340) : 607 - 634
  • [43] SPECTRAL ANALYSIS OF SADDLE-POINT MATRICES FROM OPTIMIZATION PROBLEMS WITH ELLIPTIC PDE CONSTRAINTS
    Durastante, Fabio
    Furci, Isabella
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 773 - 798
  • [44] SADDLE-POINT DYNAMICS: CONDITIONS FOR ASYMPTOTIC STABILITY OF SADDLE POINTS
    Cherukuri, Ashish
    Gharesifard, Bahman
    Cortes, Jorge
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (01) : 486 - 511
  • [45] Asymptotic stability of saddle points under the saddle-point dynamics
    Cherukuri, Ashish
    Cortes, Jorge
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 2020 - 2025
  • [46] An iterative perturbation method for saddle point problems
    Yang, DQ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) : 215 - 231
  • [47] A Smooth Vector Field for Saddle Point Problems
    Duerr, Hans-Bernd
    Ebenbauer, Christian
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4654 - 4660
  • [48] Probing methods for saddle-point problems
    Siefert, C
    de Sturler, E
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 22 : 163 - 183
  • [49] Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation
    Dauzickaite, Ieva
    Lawless, Amos S.
    Scott, Jennifer A.
    van Leeuwen, Peter Jan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (05)
  • [50] A least squares approach for saddle point problems
    Karaduman, Gul
    Yang, Mei
    Li, Ren-Cang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 95 - 107