Stability estimates and structural spectral properties of saddle point problems

被引:0
|
作者
Wolfgang Krendl
Valeria Simoncini
Walter Zulehner
机构
[1] Johannes Kepler University Linz,Doctoral Program Computational Mathematics
[2] Università di Bologna,Dipartimento di Matematica
[3] Johannes Kepler University Linz,Institute of Computational Mathematics
来源
Numerische Mathematik | 2013年 / 124卷
关键词
65F08; 65N22; 65K10; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stability constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported.
引用
收藏
页码:183 / 213
页数:30
相关论文
共 50 条
  • [31] A preconditioner for generalized saddle point problems
    Benzi, M
    Golub, GH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 20 - 41
  • [32] ON A SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS
    Salkuyeh, Davod Khojasteh
    Abdolmaleki, Maryam
    Karimi, Saeed
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 459 - 474
  • [33] THE SHSS PRECONDITIONER FOR SADDLE POINT PROBLEMS
    Li, Cuixia
    Wu, Shiliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (06): : 3221 - 3230
  • [34] On an iterative method for saddle point problems
    Tong, ZY
    Sameh, A
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 643 - 646
  • [35] An alternating preconditioner for saddle point problems
    Peng, Xiao-Fei
    Li, Wen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (12) : 3411 - 3423
  • [36] A class of smoothers for saddle point problems
    Zulehner, W
    COMPUTING, 2000, 65 (03) : 227 - 246
  • [37] On an iterative method for saddle point problems
    Zhanye Tong
    Ahmed Sameh
    Numerische Mathematik, 1998, 79 : 643 - 646
  • [38] MODIFICATIONS IN OPTIMIZATION AND SADDLE POINT PROBLEMS
    BEHAR, I
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (06) : 673 - 688
  • [39] STABILITY IN SADDLE-POINT SENSE
    LEVHARI, D
    LIVIATAN, N
    JOURNAL OF ECONOMIC THEORY, 1972, 4 (01) : 88 - 93
  • [40] An interior point method for constrained saddle point problems
    Iusem, Alfredo N.
    Kallio, Markku
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (01): : 1 - 31