Stability estimates and structural spectral properties of saddle point problems

被引:0
|
作者
Wolfgang Krendl
Valeria Simoncini
Walter Zulehner
机构
[1] Johannes Kepler University Linz,Doctoral Program Computational Mathematics
[2] Università di Bologna,Dipartimento di Matematica
[3] Johannes Kepler University Linz,Institute of Computational Mathematics
来源
Numerische Mathematik | 2013年 / 124卷
关键词
65F08; 65N22; 65K10; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stability constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported.
引用
收藏
页码:183 / 213
页数:30
相关论文
共 50 条
  • [21] Eigenvalue estimates for preconditioned saddle point matrices
    Axelsson, O
    LARGE-SALE SCIENTIFIC COMPUTING, 2003, 2907 : 3 - 16
  • [22] On the iterative algorithm for saddle point problems
    Cui, Mingrong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 10 - 13
  • [23] Robust preconditioners for saddle point problems
    Axelsson, O
    Neytcheva, M
    NUMERICAL METHODS AND APPLICATIONS, 2003, 2542 : 158 - 166
  • [24] Observations on degenerate saddle point problems
    Knyazev, Andrew V.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3742 - 3749
  • [25] Block Preconditioners for Saddle Point Problems
    Leigh Little
    Yousef Saad
    Numerical Algorithms, 2003, 33 : 367 - 379
  • [26] New preconditioners for saddle point problems
    Pan, JY
    Ng, MK
    Bai, ZZ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 762 - 771
  • [27] COMPUTATIONAL TECHNIQUES FOR SADDLE POINT PROBLEMS
    Castillo, Zenaida
    Suarez, Jean
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2008, 24 (03): : 217 - 226
  • [28] A Class of Smoothers for Saddle Point Problems
    Walter Zulehner
    Computing, 2000, 65 : 227 - 246
  • [29] A splitting preconditioner for saddle point problems
    Cao, Yang
    Jiang, Mei-Qun
    Zheng, Ying-Long
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (05) : 875 - 895
  • [30] Block preconditioners for saddle point problems
    Little, L
    Saad, Y
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 367 - 379