Stability estimates and structural spectral properties of saddle point problems

被引:0
|
作者
Wolfgang Krendl
Valeria Simoncini
Walter Zulehner
机构
[1] Johannes Kepler University Linz,Doctoral Program Computational Mathematics
[2] Università di Bologna,Dipartimento di Matematica
[3] Johannes Kepler University Linz,Institute of Computational Mathematics
来源
Numerische Mathematik | 2013年 / 124卷
关键词
65F08; 65N22; 65K10; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stability constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported.
引用
收藏
页码:183 / 213
页数:30
相关论文
共 50 条
  • [1] Stability estimates and structural spectral properties of saddle point problems
    Krendl, Wolfgang
    Simoncini, Valeria
    Zulehner, Walter
    NUMERISCHE MATHEMATIK, 2013, 124 (01) : 183 - 213
  • [2] The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems
    Li, Jian-Lei
    Huang, Ting-Zhu
    Li, Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 270 - 285
  • [3] Spectral properties of the matrix splitting preconditioners for generalized saddle point problems
    Huang, Yunying
    Chao, Zhen
    Chen, Guoliang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 332 : 1 - 12
  • [4] Spectral Analysis, Properties and Nonsingular Preconditioners for Singular Saddle Point Problems
    Huang, Na
    Ma, Chang-Feng
    Zou, Jun
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (02) : 237 - 256
  • [5] Spectral properties of a class of matrix splitting preconditioners for saddle point problems
    Wang, Rui-Rui
    Niu, Qiang
    Ma, Fei
    Lu, Lin-Zhang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 298 : 138 - 151
  • [6] Stability of saddle point problems with penalty
    Braess, D
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (06): : 731 - 742
  • [7] NONSTANDARD NORMS AND ROBUST ESTIMATES FOR SADDLE POINT PROBLEMS
    Zulehner, Walter
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 536 - 560
  • [8] Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems
    Huang, Zhuo-Hong
    Huang, Ting-Zhu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (02): : 269 - 295
  • [9] Spectral properties of primal-based penalty preconditioners for saddle point problems
    Shen, Shu-Qian
    Huang, Ting-Zhu
    Zhong, Er-Jie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2235 - 2244
  • [10] Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems
    Simoncini, V
    Benzi, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 377 - 389