Inference for quantile measures of skewness

被引:0
|
作者
Robert G. Staudte
机构
[1] La Trobe University,
来源
TEST | 2014年 / 23卷
关键词
Bowley’s coefficient of skewness; Distribution-free confidence intervals; Power functions; Tests for symmetry ; Tukey’s sparsity index; 62G99;
D O I
暂无
中图分类号
学科分类号
摘要
Given a location-scale family generated by a distribution with smooth positive density, the aim is to provide distribution-free tests and confidence intervals for a skewness coefficient determined by three quantiles. It is the Bowley–Hinkley ratio Sr/Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r/R_r$$\end{document}, where Sr=xr+x1-r-2x0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r=x_r+x_{1-r}-2x_{0.5}$$\end{document} is the sum of two symmetric quantiles minus twice the median, and Rr=x1-r-xr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_r=x_{1-r}-x_r$$\end{document} is the r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th interquantile range. Here, 0<r<0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r< 0.5$$\end{document} is to be chosen and fixed. The sample version of this ratio depends only on three order statistics and is the basis for tests and confidence intervals. It is shown that the variance stabilized version of this statistic leads to more powerful tests than the Studentized version of the sample version of Sr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r$$\end{document}. Sample sizes required to obtain accurate coverage of confidence intervals with a prespecified width are provided.
引用
下载
收藏
页码:751 / 768
页数:17
相关论文
共 50 条
  • [21] WHICH MEASURES OF SKEWNESS AND KURTOSIS ARE BEST
    ROYSTON, P
    STATISTICS IN MEDICINE, 1992, 11 (03) : 333 - 343
  • [22] Comparing measures of sample skewness and kurtosis
    Joanes, DN
    Gill, CA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1998, 47 (01) : 183 - 189
  • [23] A Unified Inference for Predictive Quantile Regression
    Liu, Xiaohui
    Long, Wei
    Peng, Liang
    Yang, Bingduo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1526 - 1540
  • [24] Nonparametric Inference on Quantile Lost Lifespan
    Balmert, Lauren
    Jeong, Jong-Hyeon
    BIOMETRICS, 2017, 73 (01) : 252 - 259
  • [25] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [26] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [27] Unit root quantile autoregression inference
    Koenker, R
    Xiao, Z
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) : 775 - 787
  • [28] Quantile inference based on clustered data
    Ozturk, Omer
    Turkmen, Asuman
    METRIKA, 2016, 79 (07) : 867 - 893
  • [29] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [30] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662