Inference for quantile measures of skewness

被引:0
|
作者
Robert G. Staudte
机构
[1] La Trobe University,
来源
TEST | 2014年 / 23卷
关键词
Bowley’s coefficient of skewness; Distribution-free confidence intervals; Power functions; Tests for symmetry ; Tukey’s sparsity index; 62G99;
D O I
暂无
中图分类号
学科分类号
摘要
Given a location-scale family generated by a distribution with smooth positive density, the aim is to provide distribution-free tests and confidence intervals for a skewness coefficient determined by three quantiles. It is the Bowley–Hinkley ratio Sr/Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r/R_r$$\end{document}, where Sr=xr+x1-r-2x0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r=x_r+x_{1-r}-2x_{0.5}$$\end{document} is the sum of two symmetric quantiles minus twice the median, and Rr=x1-r-xr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_r=x_{1-r}-x_r$$\end{document} is the r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th interquantile range. Here, 0<r<0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r< 0.5$$\end{document} is to be chosen and fixed. The sample version of this ratio depends only on three order statistics and is the basis for tests and confidence intervals. It is shown that the variance stabilized version of this statistic leads to more powerful tests than the Studentized version of the sample version of Sr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_r$$\end{document}. Sample sizes required to obtain accurate coverage of confidence intervals with a prespecified width are provided.
引用
收藏
页码:751 / 768
页数:17
相关论文
共 50 条