Fractional damping enhances chaos in the nonlinear Helmholtz oscillator

被引:0
|
作者
Adolfo Ortiz
Jianhua Yang
Mattia Coccolo
Jesús M. Seoane
Miguel A. F. Sanjuán
机构
[1] Universidad Veracruzana,Centro de Investigación en Micro y Nanotecnología, Facultad de Ingeniería
[2] China University of Mining and Technology,School of Mechatronic Engineering
[3] Universidad Rey Juan Carlos,Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física
来源
Nonlinear Dynamics | 2020年 / 102卷
关键词
Nonlinear oscillations; Delay systems; Resonance; Fractional derivatives;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to study both the underdamped and the overdamped dynamics of the nonlinear Helmholtz oscillator with a fractional-order damping. For that purpose, we use the Grünwald–Letnikov fractional derivative algorithm in order to get the numerical simulations. Here, we investigate the effect of taking the fractional derivative in the dissipative term in function of the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Our main findings show that the trajectories can remain inside the well or can escape from it depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} which plays the role of a control parameter. Besides, the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is also relevant for the creation or destruction of chaotic motions. On the other hand, the study of the escape times of the particles from the well, as a result of variations of the initial conditions and the undergoing force F, is reported by the use of visualization techniques such as basins of attraction and bifurcation diagrams, showing a good agreement with previous results. Finally, the study of the escape times versus the fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} shows an exponential decay which goes to zero when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is larger than one. All the results have been carried out for weak damping where chaotic motions can take place in the non-fractional case and also for a stronger damping (overdamped case), where the influence of the fractional term plays a crucial role to enhance chaotic motions. We expect that these results can be of interest in the field of fractional calculus and its applications.
引用
收藏
页码:2323 / 2337
页数:14
相关论文
共 50 条
  • [31] Responses of Duffing oscillator with fractional damping and random phase
    Xu, Yong
    Li, Yongge
    Liu, Di
    Jia, Wantao
    Huang, Hui
    [J]. NONLINEAR DYNAMICS, 2013, 74 (03) : 745 - 753
  • [32] Nonlinear Hamiltonian equations with fractional damping
    Seredynska, M
    Hanyga, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 2135 - 2156
  • [33] Responses of Duffing oscillator with fractional damping and random phase
    Yong Xu
    Yongge Li
    Di Liu
    Wantao Jia
    Hui Huang
    [J]. Nonlinear Dynamics, 2013, 74 : 745 - 753
  • [34] Fractional damping induces resonant behavior in the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [35] Chaos in a double driven dissipative nonlinear oscillator
    Adamyan, H.H.
    Manvelyan, S.B.
    Kryuchkyan, G.Yu.
    [J]. 2001, American Institute of Physics Inc. (64):
  • [36] Chaos in a double driven dissipative nonlinear oscillator
    Adamyan, HH
    Manvelyan, SB
    Kryuchkyan, GY
    [J]. PHYSICAL REVIEW E, 2001, 64 (04):
  • [37] NEIMARK BIFURCATIONS OF A GENERALIZED DUFFING-VAN DER POL OSCILLATOR WITH NONLINEAR FRACTIONAL ORDER DAMPING
    Leung, A. Y. T.
    Yang, H. X.
    Zhu, P.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [38] The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise
    Tian, Yan
    Zhong, Lin-Feng
    He, Gui-Tian
    Yu, Tao
    Luo, Mao-Kang
    Stanley, H. Eugene
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 845 - 856
  • [39] CHAOTIC VIBRATION IN A NONLINEAR OSCILLATOR WITH COULOMB DAMPING
    NARAYANAN, S
    JAYARAMAN, K
    [J]. JOURNAL OF SOUND AND VIBRATION, 1991, 146 (01) : 17 - 31
  • [40] A short remark on the nonlinear oscillator with a damping term
    Yao, Shaowen
    Cheng, Zhibo
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (02) : 1091 - 1095