A short remark on the nonlinear oscillator with a damping term

被引:2
|
作者
Yao, Shaowen [1 ]
Cheng, Zhibo [1 ,2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Semi-inverse method; variational principle; dissipative energy; Taylor series method; He's frequency formulation; VARIATIONAL ITERATION METHOD; FREQUENCY FORMULATION; FRACTAL CALCULUS; PRINCIPLE; TRANSFORM; EQUATIONS;
D O I
10.1177/1461348420917244
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A nonlinear oscillator with a damping term can model many nonlinear vibration problems. This short remark insights into its physical understanding by the variational principle, which is established by the semi-inverse method. The dissipative energy involved in the variational formulation can be explained by the two-scale thermodynamics. Taylor series method is used to solve its frequency-amplitude relation.
引用
收藏
页码:1091 / 1095
页数:5
相关论文
共 50 条
  • [1] Nonlinear damping in a micromechanical oscillator
    Zaitsev, Stav
    Shtempluck, Oleg
    Buks, Eyal
    Gottlieb, Oded
    [J]. NONLINEAR DYNAMICS, 2012, 67 (01) : 859 - 883
  • [2] Nonlinear damping in a micromechanical oscillator
    Stav Zaitsev
    Oleg Shtempluck
    Eyal Buks
    Oded Gottlieb
    [J]. Nonlinear Dynamics, 2012, 67 : 859 - 883
  • [3] Confusion threshold study of the Duffing oscillator with a nonlinear fractional damping term
    Mei-Qi, Wang
    Wen-Li, Ma
    En-Li, Chen
    Shao-Pu, Yang
    Yu-Jian, Chang
    Zhang, Wanjie
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (02) : 929 - 947
  • [4] Invariant tori for a reversible oscillator with a nonlinear damping and periodic forcing term
    Si, JG
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (07) : 1475 - 1495
  • [5] A local differential transform approach to the cubic nonlinear Duffing oscillator with damping term
    Tunc, H.
    Sari, M.
    [J]. SCIENTIA IRANICA, 2019, 26 (02) : 879 - 886
  • [6] BEHAVIOR OF AN OSCILLATOR WITH EVEN NONLINEAR DAMPING
    HOLMES, PJ
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1977, 12 (05) : 323 - 326
  • [7] RANDOM VIBRATION OF OSCILLATOR WITH NONLINEAR DAMPING
    CRANDALL, SH
    KHABBAZ, GR
    MANNING, JE
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1964, 36 (07): : 1330 - &
  • [8] Stability of a nonlinear oscillator with random damping
    Leprovost, N.
    Aumaitre, S.
    Mallick, K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (04): : 453 - 458
  • [9] Nonlinear viscoelastic damping in a Poynting oscillator
    Wineman, Alan Stuart
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (01) : 3 - 21
  • [10] Stability of a nonlinear oscillator with random damping
    N. Leprovost
    S. Aumaître
    K. Mallick
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 453 - 458