Confusion threshold study of the Duffing oscillator with a nonlinear fractional damping term

被引:4
|
作者
Mei-Qi, Wang [1 ,2 ]
Wen-Li, Ma [1 ,2 ]
En-Li, Chen [1 ,2 ]
Shao-Pu, Yang [1 ,2 ]
Yu-Jian, Chang [3 ]
Zhang, Wanjie [1 ,2 ,3 ]
机构
[1] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Mech Engn, Shijiazhuang, Hebei, Peoples R China
[3] Shijiazhuang Tiedao Univ, Sch Elect & Elect Engn, Shijiazhuang, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear damping; fractional derivative; Duffing oscillator; stability; FRACTAL CALCULUS; SYNCHRONIZATION; EXPLANATION; TRANSFORM; POL; VAN;
D O I
10.1177/1461348420922686
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this study, the critical conditions for generating chaos in a Duffing oscillator with nonlinear damping and fractional derivative are investigated. The Melnikov function of the Duffing oscillator is established based on Melnikov theory. The necessary analytical conditions and critical value curves of chaotic motion in the sense of Smale horseshoe are obtained. The numerical solutions of chaotic motion, including time history diagram, frequency spectrum diagram, phase diagram, and Poincare map, are studied. The correctness of the analytical solution is verified through a comparison of numerical and analytical calculations. The effects of linear and nonlinear parameters on chaotic motion are also analyzed. These results are relevant to the study of system dynamics.
引用
收藏
页码:929 / 947
页数:19
相关论文
共 50 条
  • [1] Vibration of the Duffing oscillator: Effect of fractional damping
    Borowiec, Marek
    Litak, Grzegorz
    Syta, Arkadiusz
    [J]. SHOCK AND VIBRATION, 2007, 14 (01) : 29 - 36
  • [2] Fractional damping effects on the transient dynamics of the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Lenci, Stefano
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [3] Responses of Duffing oscillator with fractional damping and random phase
    Xu, Yong
    Li, Yongge
    Liu, Di
    Jia, Wantao
    Huang, Hui
    [J]. NONLINEAR DYNAMICS, 2013, 74 (03) : 745 - 753
  • [4] Responses of Duffing oscillator with fractional damping and random phase
    Yong Xu
    Yongge Li
    Di Liu
    Wantao Jia
    Hui Huang
    [J]. Nonlinear Dynamics, 2013, 74 : 745 - 753
  • [5] Fractional damping induces resonant behavior in the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [6] A local differential transform approach to the cubic nonlinear Duffing oscillator with damping term
    Tunc, H.
    Sari, M.
    [J]. SCIENTIA IRANICA, 2019, 26 (02) : 879 - 886
  • [7] Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method
    Qin H.
    Wen S.
    Shen Y.
    Xing H.
    Wang J.
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (06): : 33 - 40and134
  • [8] The Duffing oscillator with damping
    Johannessen, Kim
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2015, 36 (06)
  • [9] NONLINEAR DYNAMICS OF DUFFING SYSTEM WITH FRACTIONAL ORDER DAMPING
    Cao, Junyi
    Ma, Chengbin
    Xie, Hang
    Jiang, Zhuangde
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1003 - 1009
  • [10] Nonlinear Dynamics of Duffing System With Fractional Order Damping
    Cao, Junyi
    Ma, Chengbin
    Xie, Hang
    Jiang, Zhuangde
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (04): : 1 - 6