Fractional damping enhances chaos in the nonlinear Helmholtz oscillator

被引:0
|
作者
Adolfo Ortiz
Jianhua Yang
Mattia Coccolo
Jesús M. Seoane
Miguel A. F. Sanjuán
机构
[1] Universidad Veracruzana,Centro de Investigación en Micro y Nanotecnología, Facultad de Ingeniería
[2] China University of Mining and Technology,School of Mechatronic Engineering
[3] Universidad Rey Juan Carlos,Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física
来源
Nonlinear Dynamics | 2020年 / 102卷
关键词
Nonlinear oscillations; Delay systems; Resonance; Fractional derivatives;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to study both the underdamped and the overdamped dynamics of the nonlinear Helmholtz oscillator with a fractional-order damping. For that purpose, we use the Grünwald–Letnikov fractional derivative algorithm in order to get the numerical simulations. Here, we investigate the effect of taking the fractional derivative in the dissipative term in function of the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Our main findings show that the trajectories can remain inside the well or can escape from it depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} which plays the role of a control parameter. Besides, the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is also relevant for the creation or destruction of chaotic motions. On the other hand, the study of the escape times of the particles from the well, as a result of variations of the initial conditions and the undergoing force F, is reported by the use of visualization techniques such as basins of attraction and bifurcation diagrams, showing a good agreement with previous results. Finally, the study of the escape times versus the fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} shows an exponential decay which goes to zero when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is larger than one. All the results have been carried out for weak damping where chaotic motions can take place in the non-fractional case and also for a stronger damping (overdamped case), where the influence of the fractional term plays a crucial role to enhance chaotic motions. We expect that these results can be of interest in the field of fractional calculus and its applications.
引用
收藏
页码:2323 / 2337
页数:14
相关论文
共 50 条
  • [21] Analysis of the simple harmonic oscillator with fractional damping
    Mickens, RE
    Oyedeji, KO
    Rucker, SA
    [J]. JOURNAL OF SOUND AND VIBRATION, 2003, 268 (04) : 839 - 842
  • [22] Vibration of the Duffing oscillator: Effect of fractional damping
    Borowiec, Marek
    Litak, Grzegorz
    Syta, Arkadiusz
    [J]. SHOCK AND VIBRATION, 2007, 14 (01) : 29 - 36
  • [23] Resonant Behavior of a Fractional Oscillator with Random Damping
    Laas, K.
    Mankin, R.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [24] BEHAVIOR OF AN OSCILLATOR WITH EVEN NONLINEAR DAMPING
    HOLMES, PJ
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1977, 12 (05) : 323 - 326
  • [25] RANDOM VIBRATION OF OSCILLATOR WITH NONLINEAR DAMPING
    CRANDALL, SH
    KHABBAZ, GR
    MANNING, JE
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1964, 36 (07): : 1330 - &
  • [26] Stability of a nonlinear oscillator with random damping
    Leprovost, N.
    Aumaitre, S.
    Mallick, K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (04): : 453 - 458
  • [27] Nonlinear viscoelastic damping in a Poynting oscillator
    Wineman, Alan Stuart
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (01) : 3 - 21
  • [28] Stability of a nonlinear oscillator with random damping
    N. Leprovost
    S. Aumaître
    K. Mallick
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 453 - 458
  • [29] Chaos and chaos synchronization for fractional-order degenerate optical parametric oscillator
    Dept. of Physics and Information Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
    [J]. Bandaoti Guangdian, 2008, 4 (524-527):
  • [30] Fractional damping effects on the transient dynamics of the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Lenci, Stefano
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117