Fractional damping enhances chaos in the nonlinear Helmholtz oscillator

被引:0
|
作者
Adolfo Ortiz
Jianhua Yang
Mattia Coccolo
Jesús M. Seoane
Miguel A. F. Sanjuán
机构
[1] Universidad Veracruzana,Centro de Investigación en Micro y Nanotecnología, Facultad de Ingeniería
[2] China University of Mining and Technology,School of Mechatronic Engineering
[3] Universidad Rey Juan Carlos,Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física
来源
Nonlinear Dynamics | 2020年 / 102卷
关键词
Nonlinear oscillations; Delay systems; Resonance; Fractional derivatives;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to study both the underdamped and the overdamped dynamics of the nonlinear Helmholtz oscillator with a fractional-order damping. For that purpose, we use the Grünwald–Letnikov fractional derivative algorithm in order to get the numerical simulations. Here, we investigate the effect of taking the fractional derivative in the dissipative term in function of the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Our main findings show that the trajectories can remain inside the well or can escape from it depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} which plays the role of a control parameter. Besides, the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is also relevant for the creation or destruction of chaotic motions. On the other hand, the study of the escape times of the particles from the well, as a result of variations of the initial conditions and the undergoing force F, is reported by the use of visualization techniques such as basins of attraction and bifurcation diagrams, showing a good agreement with previous results. Finally, the study of the escape times versus the fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} shows an exponential decay which goes to zero when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is larger than one. All the results have been carried out for weak damping where chaotic motions can take place in the non-fractional case and also for a stronger damping (overdamped case), where the influence of the fractional term plays a crucial role to enhance chaotic motions. We expect that these results can be of interest in the field of fractional calculus and its applications.
引用
收藏
页码:2323 / 2337
页数:14
相关论文
共 50 条
  • [1] Fractional damping enhances chaos in the nonlinear Helmholtz oscillator
    Ortiz, Adolfo
    Yang, Jianhua
    Coccolo, Mattia
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    [J]. NONLINEAR DYNAMICS, 2020, 102 (04) : 2323 - 2337
  • [2] Nonlinear Dynamics of the Quadratic-Damping Helmholtz Oscillator
    Fangnon, R.
    Ainamon, C.
    Monwanou, A. V.
    Miwadinou, C. H.
    Chabi Orou, J. B.
    [J]. COMPLEXITY, 2020, 2020
  • [3] Chaos of nonlinear fractional-calculus oscillator
    20144800268135
    [J]. (1) Department of Electronic Engineering, JiNan University, Guangzhou, Guangdong; 510632, China; (2) Department of Mechanics and Civil Engineering, JiNan University, China; (3) Department of Mechanical Engineering, Iwaki Meisei University, Japan, 1600, FunctionBay, Inc. (International Federation for the Promotion of Mechanism and Machine Science (IFToMM)):
  • [4] FORCED VIBRATIONS OF A NONLINEAR OSCILLATOR WITH WEAK FRACTIONAL DAMPING
    Rossikhin, Yuriy A.
    Shitikova, Marina V.
    Shcheglova, Tatiana
    [J]. JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2009, 4 (09) : 1619 - 1636
  • [5] Chaos in the quasiperiodically excited softening duffing oscillator with nonlinear damping
    Lou, JJ
    Zhu, SJ
    Liu, SY
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 1 : 73 - 77
  • [6] Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator
    Palanivel, J.
    Suresh, K.
    Sabarathinam, S.
    Thamilmaran, K.
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 95 : 33 - 41
  • [7] Nonlinear dynamic response characteristics of SD oscillator with fractional damping
    Chen E.-L.
    Wang M.-H.
    Wang M.-Q.
    Chang Y.-J.
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (05): : 1068 - 1075
  • [8] Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping
    Sharma, Anjali
    Patidar, Vinod
    Purohit, G.
    Sud, K. K.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2254 - 2269
  • [9] Confusion threshold study of the Duffing oscillator with a nonlinear fractional damping term
    Mei-Qi, Wang
    Wen-Li, Ma
    En-Li, Chen
    Shao-Pu, Yang
    Yu-Jian, Chang
    Zhang, Wanjie
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (02) : 929 - 947
  • [10] The intrinsic damping of the fractional oscillator
    Tofighi, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 329 (1-2) : 29 - 34