Effective compression maps for torus-based cryptography

被引:0
|
作者
Andrea Montanari
机构
来源
关键词
Discrete logarithm problem (DLP); Algebraic tori; Birational maps; Hermitian curves; Singer arc; CEILIDH ; XTR; Pairing-based cryptography; 94A60; 14G50; 14E05;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit parametrizations of the algebraic tori Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}_{n}$$\end{document} over any finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} for any prime power n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. Applying the construction for n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} to a quadratic field Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^2}$$\end{document} we show that the set of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}-rational points of the torus T6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}_{6}$$\end{document} is birationally equivalent to the affine part of a Singer arc in P2(Fq2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^2(\mathbb {F}_{q^2})$$\end{document}. This gives a simple, yet efficient compression and decompression algorithm from T6(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}_{6}(\mathbb {F}_{q})$$\end{document} to A2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}^2(\mathbb {F}_{q})$$\end{document} that can be substituted in the faster implementation of CEILIDH (Granger et al., in Algorithmic number theory, pp 235–249, Springer, Berlin, 2004) achieving a theoretical 30 % speedup and that is also cheaper than the recently proposed factor-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document} compression technique in Karabina (IEEE Trans Inf Theory 58(5):3293–3304, 2012). The compression methods here presented have a wide class of applications to public-key and pairing-based cryptography over any finite field.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [31] P-Torus: Torus-based Optical Packet Switching Architecture for intra-Data Centre Networks
    Chaintoutis, Charidimos
    Bogris, Adonis
    Syvridis, Dimitris
    [J]. 2018 PHOTONICS IN SWITCHING AND COMPUTING (PSC), 2018,
  • [32] Novo-G#: a multidimensional torus-based reconfigurable cluster for molecular dynamics
    Lawande, Abhijeet G.
    George, Alan D.
    Lam, Herman
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (08): : 2374 - 2393
  • [33] Spherical torus-based video hashing for near-duplicate video detection
    Nie, Xiushan
    Chai, Yane
    Liu, Ju
    Sun, Jiande
    Yin, Yilong
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (05)
  • [34] Deadlock-free multi-path routing for torus-based NoCs
    Jiao, Yaoting
    Yang, Mei
    Yang, Yulu
    Jiang, Yingtao
    Yun, Xiaochun
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 253 - +
  • [35] Spherical torus-based video hashing for near-duplicate video detection
    Xiushan NIE
    Yane CHAI
    Ju LIU
    Jiande SUN
    Yilong YIN
    [J]. Science China(Information Sciences), 2016, 59 (05) : 239 - 241
  • [36] Comparing four classes of torus-based parallel architectures: Network parameters and communication performance
    Parhami, B
    Kwai, DM
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) : 701 - 720
  • [37] Clustering and Message Distance Trade-offs in Torus-Based Networks-on-Chip
    Loucif, Samia
    [J]. 2013 IEEE EUROCON, 2013, : 687 - 693
  • [38] A thermal-sensitive design of a 3D torus-based optical NoC architecture
    Ye, Yaoyao
    Zhang, Zhe
    [J]. INTEGRATION-THE VLSI JOURNAL, 2019, 68 : 22 - 29
  • [39] Crosstalk Analysis and Performance Evaluation for Torus-Based Optical Networks-on-Chip Using WDM
    Song, Tingting
    Xie, Yiyuan
    Ye, Yichen
    Wang, Shujian
    Du, Yingxue
    [J]. MICROMACHINES, 2020, 11 (11)
  • [40] A formal study on topology and floorplan characteristics of mesh and torus-based optical networks-on-chip
    Feng, Kai
    Ye, Yaoyao
    Xu, Jiang
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2013, 37 (08) : 941 - 952