Quasi-Periodic Solutions of Derivative Beam Equation on Flat Tori

被引:0
|
作者
Yingte Sun
机构
[1] Yangzhou University,School of Mathematical Sciences
关键词
Quasi-periodic solutions; KAM theory; Nash-Moser iteration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of nonlinear beam equations on flat tori TLd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^d_{\mathfrak {L}}$$\end{document}, utt+Δ2u=ϵ(-Δ)αf(ωt,x,(-Δ)βu),0<α+β≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{tt}+\Delta ^2u=\epsilon (-\Delta )^{\alpha } f(\omega t,x,(-\Delta )^{\beta }u), \quad 0<\alpha +\beta \le 1 \end{aligned}$$\end{document}and prove that the equation admits many quasi-periodic solutions with the non-resonant frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. The main proof is based on an abstract Nash-Moser type implicit function theorem developed in Berti and Bolle (Nonlinearity 25(9):2579–2613, 2012; J Eur Math Soc 15(1):229–286, 2013).
引用
收藏
相关论文
共 50 条
  • [31] Quasi-periodic solutions for a nonlinear wave equation
    Poschel, J
    COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (02) : 269 - 296
  • [32] Spatially Quasi-Periodic Solutions of the Euler Equation
    Sun, Xu
    Topalov, Peter
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [33] On quasi-periodic solutions for a generalized Boussinesq equation
    Shi, Yanling
    Xu, Junxiang
    Xu, Xindong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 105 : 50 - 61
  • [34] Quasi-periodic solutions in a nonlinear Schrodinger equation
    Geng, Jiansheng
    Yi, Yingfei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (02) : 512 - 542
  • [35] Explicit quasi-periodic solutions of the Vakhnenko equation
    Zhai, Yunyun
    Geng, Xianguo
    He, Guoliang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
  • [36] Quasi-periodic solutions of forced Kirchhoff equation
    Riccardo Montalto
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [37] Continuation of quasi-periodic invariant tori
    Schilder, F
    Osinga, HM
    Vogt, W
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (03): : 459 - 488
  • [38] Quasi-periodic oscillations of perturbed tori
    Parthasarathy, Varadarajan
    Manousakis, Antonios
    Kluzniak, Wlodzimierz
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (01) : 666 - 672
  • [39] Instabilities of invariant quasi-periodic tori
    Farre, Gerard
    Fayad, Bassam
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (12) : 4363 - 4383
  • [40] Viscous stability of quasi-periodic tori
    Liang, Zhenguo
    Yan, Jun
    Yi, Yingfei
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 185 - 210