Quasi-periodic solutions in a nonlinear Schrodinger equation

被引:65
|
作者
Geng, Jiansheng
Yi, Yingfei [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
Schrodinger equation; Hamiltonian systems; KAM theory; normal form; quasi-periodic solution;
D O I
10.1016/j.jde.2006.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one-dimensional (1D) nonlinear Schrodinger equation iu(t) - u(xx) + mu + vertical bar u vertical bar(4)u = 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:512 / 542
页数:31
相关论文
共 50 条