Quasi-Periodic Solutions of Derivative Beam Equation on Flat Tori

被引:0
|
作者
Yingte Sun
机构
[1] Yangzhou University,School of Mathematical Sciences
关键词
Quasi-periodic solutions; KAM theory; Nash-Moser iteration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of nonlinear beam equations on flat tori TLd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^d_{\mathfrak {L}}$$\end{document}, utt+Δ2u=ϵ(-Δ)αf(ωt,x,(-Δ)βu),0<α+β≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{tt}+\Delta ^2u=\epsilon (-\Delta )^{\alpha } f(\omega t,x,(-\Delta )^{\beta }u), \quad 0<\alpha +\beta \le 1 \end{aligned}$$\end{document}and prove that the equation admits many quasi-periodic solutions with the non-resonant frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. The main proof is based on an abstract Nash-Moser type implicit function theorem developed in Berti and Bolle (Nonlinearity 25(9):2579–2613, 2012; J Eur Math Soc 15(1):229–286, 2013).
引用
收藏
相关论文
共 50 条
  • [21] The quasi-periodic solution of fractional nonlinear Schrodinger equation on tori
    Liu, Jieyu
    Zhang, Jing
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [22] KAM Tori for a Two Dimensional Beam Equation with a Quintic Nonlinear Term and Quasi-periodic Forcing
    Min Zhang
    Jie Rui
    Yan Li
    Jian Zhang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [23] Quasi-periodic Solutions for the Derivative Nonlinear Schrodinger Equation with Finitely Differentiable Nonlinearities
    Gao, Meina
    Zhang, Kangkang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (03) : 759 - 786
  • [24] KAM Tori for a Two Dimensional Beam Equation with a Quintic Nonlinear Term and Quasi-periodic Forcing
    Zhang, Min
    Rui, Jie
    Li, Yan
    Zhang, Jian
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [25] Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrodinger equation
    Gao, Meina
    Liu, Jianjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) : 1322 - 1375
  • [26] Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
    K. Guennoun
    M. Houssni
    M. Belhaq
    Nonlinear Dynamics, 2002, 27 : 211 - 236
  • [27] Quasi-periodic solutions and stability for a weakly damped nonlinear quasi-periodic Mathieu equation
    Guennoun, K
    Houssni, M
    Belhaq, M
    NONLINEAR DYNAMICS, 2002, 27 (03) : 211 - 236
  • [28] Spatially Quasi-Periodic Solutions of the Euler Equation
    Xu Sun
    Peter Topalov
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [29] Quasi-periodic solutions of forced Kirchhoff equation
    Montalto, Riccardo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (01):
  • [30] ON QUASI-PERIODIC SOLUTIONS OF THE MATRIX RICCATI EQUATION
    PRONKIN, VS
    RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1994, 43 (03): : 455 - 470