An analytical framework for interpretable and generalizable single-cell data analysis

被引:0
|
作者
Jian Zhou
Olga G. Troyanskaya
机构
[1] University of Texas Southwestern Medical Center,Lyda Hill Department of Bioinformatics
[2] Princeton University,Lewis
[3] Simons Foundation,Sigler Institute for Integrative Genomics
[4] Princeton University,Flatiron Institute
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference.
引用
收藏
页码:1317 / 1321
页数:4
相关论文
共 50 条
  • [21] A statistical framework for multiparameter analysis at the single-cell level
    Torres-Garcia, Wandaliz
    Ashili, Shashanka
    Kelbauskas, Laimonas
    Johnson, Roger H.
    Zhang, Weiwen
    Runger, George C.
    Meldrum, Deirdre R.
    MOLECULAR BIOSYSTEMS, 2012, 8 (03) : 804 - 817
  • [22] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Moller, Andreas Fonss
    Madsen, Jesper Grud Skat
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [23] Single-Cell Analysis: Technology, Data Analysis, and Applications
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 69 - 70
  • [24] Single-cell regulome data analysis by SCRAT
    Ji, Zhicheng
    Zhou, Weiqiang
    Ji, Hongkai
    BIOINFORMATICS, 2017, 33 (18) : 2930 - 2932
  • [25] A versatile model for single-cell data analysis
    Jun Ding
    Nature Computational Science, 2021, 1 : 460 - 461
  • [26] A versatile model for single-cell data analysis
    Ding, Jun
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07): : 460 - 461
  • [27] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Andreas Fønss Møller
    Jesper Grud Skat Madsen
    Nature Communications, 14
  • [28] Statistical analysis of single-cell protein data
    Fridley, Brooke L.
    Vandekar, Simon
    Chervoneva, Inna
    Wrobel, Julia
    Ma, Siyuan
    BIOCOMPUTING 2024, PSB 2024, 2024, : 654 - 660
  • [29] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    CELL, 2021, 184 (13) : 3573 - +
  • [30] Interpretable single-cell factor decomposition using sciRED
    Delaram Pouyabahar
    Tallulah Andrews
    Gary D. Bader
    Nature Communications, 16 (1)