Integrated analysis of multimodal single-cell data

被引:5163
|
作者
Hao, Yuhan [1 ,2 ]
Hao, Stephanie [3 ]
Andersen-Nissen, Erica [4 ,5 ]
Mauck, William M. I. I. I. I. I. I. [1 ]
Zheng, Shiwei [1 ,2 ]
Butler, Andrew [1 ,2 ]
Lee, Maddie J. [6 ]
Wilk, Aaron J. [6 ]
Darby, Charlotte [1 ]
Zager, Michael [7 ]
Hoffman, Paul [1 ]
Stoeckius, Marlon [3 ]
Papalexi, Efthymia [1 ,2 ]
Mimitou, Eleni P. [3 ]
Jain, Jaison [1 ]
Srivastava, Avi [1 ]
Stuart, Tim [1 ]
Fleming, Lamar M. [4 ]
Yeung, Bertrand [8 ]
Rogers, Angela J. [6 ]
McElrath, Juliana M. [4 ]
Blish, Catherine A. [6 ,9 ]
Gottardo, Raphael [4 ]
Smibert, Peter [3 ]
Satija, Rahul [1 ,2 ]
机构
[1] NYU, Ctr Genom & Syst Biol, 550 1St Ave, New York, NY 10003 USA
[2] New York Genome Ctr, New York, NY 10013 USA
[3] New York Genome Ctr, Technol Innovat Lab, New York, NY 10013 USA
[4] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA 98109 USA
[5] Hutchinson Canc Res Inst South Africa, Cape Town HVTN Immunol Lab, ZA-8001 Cape Town, South Africa
[6] Stanford Univ, Sch Med, Dept Med, Stanford, CA 94305 USA
[7] Fred Hutchinson Canc Res Ctr, Ctr Data Visualizat, Seattle, WA 98109 USA
[8] BioLegend Inc, San Diego, CA 92121 USA
[9] Chan Zuckerberg Biohub, San Francisco, CA 94063 USA
关键词
RNA-SEQUENCING DATA; CD8(+) T-CELLS; MASS CYTOMETRY; NK CELLS; SEQ DATA; IMMUNE; CHROMATIN; RESPONSES; NORMALIZATION; PROTEINS;
D O I
10.1016/j.cell.2021.04.048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
引用
收藏
页码:3573 / +
页数:44
相关论文
共 50 条
  • [1] Integrated analysis of multimodal single-cell data with structural similarity
    Cao, Yingxin
    Fu, Laiyi
    Wu, Jie
    Peng, Qinke
    Nie, Qing
    Zhang, Jing
    Xie, Xiaohui
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E121
  • [2] Cobolt: integrative analysis of multimodal single-cell sequencing data
    Gong, Boying
    Zhou, Yun
    Purdom, Elizabeth
    [J]. GENOME BIOLOGY, 2021, 22 (01)
  • [3] Cobolt: integrative analysis of multimodal single-cell sequencing data
    Boying Gong
    Yun Zhou
    Elizabeth Purdom
    [J]. Genome Biology, 22
  • [4] T cell receptor–centric perspective to multimodal single-cell data analysis
    Mullan, Kerry A.
    Ha, My
    Valkiers, Sebastiaan
    de Vrij, Nicky
    Ogunjimi, Benson
    Laukens, Kris
    Meysman, Pieter
    [J]. Science Advances, 2024, 10 (48)
  • [5] Editorial: Multimodal and Integrative Analysis of Single-Cell or Bulk Sequencing Data
    Chen, Geng
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [6] scJVAE: A novel method for integrative analysis of multimodal single-cell data
    Wani, Shahid Ahmad
    Khan, Sumeer Ahmad
    Quadri, S. M. K.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [7] Clustering single-cell multimodal omics data with jrSiCKLSNMF
    Ellis, Dorothy
    Roy, Arkaprava
    Datta, Susmita
    [J]. FRONTIERS IN GENETICS, 2023, 14
  • [8] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    [J]. BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [9] Interactive, integrated analysis of single-cell transcriptomic and phylogenetic data with PhyloVision
    Jones, Matthew G.
    Rosen, Yanay
    Yosef, Nir
    [J]. CELL REPORTS METHODS, 2022, 2 (04):
  • [10] LSMMD-MA: scaling multimodal data integration for single-cell genomics data analysis
    Meng-Papaxanthos, Laetitia
    Zhang, Ran
    Li, Gang
    Cuturi, Marco
    Noble, William Stafford
    Vert, Jean-Philippe
    [J]. BIOINFORMATICS, 2023, 39 (07)