An analytical framework for interpretable and generalizable single-cell data analysis

被引:0
|
作者
Jian Zhou
Olga G. Troyanskaya
机构
[1] University of Texas Southwestern Medical Center,Lyda Hill Department of Bioinformatics
[2] Princeton University,Lewis
[3] Simons Foundation,Sigler Institute for Integrative Genomics
[4] Princeton University,Flatiron Institute
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference.
引用
收藏
页码:1317 / 1321
页数:4
相关论文
共 50 条
  • [41] A unified computational framework for single-cell data integration with optimal transport
    Kai Cao
    Qiyu Gong
    Yiguang Hong
    Lin Wan
    Nature Communications, 13
  • [42] A unified computational framework for single-cell data integration with optimal transport
    Cao, Kai
    Gong, Qiyu
    Hong, Yiguang
    Wan, Lin
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [43] siVAE: interpretable deep generative models for single-cell transcriptomes
    Choi, Yongin
    Li, Ruoxin
    Quon, Gerald
    GENOME BIOLOGY, 2023, 24 (01)
  • [44] siVAE: interpretable deep generative models for single-cell transcriptomes
    Yongin Choi
    Ruoxin Li
    Gerald Quon
    Genome Biology, 24
  • [46] Interactive single-cell data analysis using Cellar
    Euxhen Hasanaj
    Jingtao Wang
    Arjun Sarathi
    Jun Ding
    Ziv Bar-Joseph
    Nature Communications, 13
  • [47] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [48] Single-cell multiomics: technologies and data analysis methods
    Jeongwoo Lee
    Do Young Hyeon
    Daehee Hwang
    Experimental & Molecular Medicine, 2020, 52 : 1428 - 1442
  • [49] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [50] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252