Multiscale Finite Element Methods for an Elliptic Optimal Control Problem with Rough Coefficients

被引:0
|
作者
Susanne C. Brenner
José C. Garay
Li-Yeng Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
来源
关键词
Multiscale; Rough coefficients; Elliptic optimal control; Localized orthogonal decomposition; Domain decomposition; P-MINRES; 65N30; 65N15; 65N55; 49N10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate multiscale finite element methods for an elliptic distributed optimal control problem with rough coefficients. They are based on the (local) orthogonal decomposition methodology of Målqvist and Peterseim.
引用
收藏
相关论文
共 50 条
  • [21] Mixed Finite Element Methods for Fourth Order Elliptic Optimal Control Problems
    Manickam, K.
    Prakash, P.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (04) : 528 - 548
  • [22] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [23] ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    Bonito, Andrea
    Devore, Ronald A.
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3106 - 3134
  • [24] A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN
    Ming, Pingbing
    Xu, Xianmin
    MULTISCALE MODELING & SIMULATION, 2016, 14 (04): : 1276 - 1300
  • [25] Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients
    Hou, TY
    Wu, XH
    Cai, ZQ
    MATHEMATICS OF COMPUTATION, 1999, 68 (227) : 913 - 943
  • [26] SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS
    BABUSKA, I
    CALOZ, G
    OSBORN, JE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) : 945 - 981
  • [27] Adaptive Finite Element Method for an Elliptic Optimal Control Problem with Integral State Constraints
    Shakya, Pratibha
    Porwal, Kamana
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [28] A splitting positive definite mixed finite element method for elliptic optimal control problem
    Guo, Hui
    Fu, Hongfei
    Zhang, Jiansong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11178 - 11190
  • [29] Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    Presho, Michael
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (03) : 733 - 755
  • [30] Mixed Finite Element Analysis for an Elliptic/Mixed Elliptic Interface Problem with Jump Coefficients
    Lan, Rihui
    Sun, Pengtao
    Mu, Mo
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1913 - 1922