Multiscale Finite Element Methods for an Elliptic Optimal Control Problem with Rough Coefficients

被引:0
|
作者
Susanne C. Brenner
José C. Garay
Li-Yeng Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
来源
关键词
Multiscale; Rough coefficients; Elliptic optimal control; Localized orthogonal decomposition; Domain decomposition; P-MINRES; 65N30; 65N15; 65N55; 49N10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate multiscale finite element methods for an elliptic distributed optimal control problem with rough coefficients. They are based on the (local) orthogonal decomposition methodology of Målqvist and Peterseim.
引用
收藏
相关论文
共 50 条
  • [11] A multiscale finite element method for optimal control problems governed by the elliptic homogenization equations
    Li, Jian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (03) : 390 - 398
  • [12] INTERPOLATION COEFFICIENTS MIXED FINITE ELEMENT METHODS AND L∞ - ERROR ESTIMATES FOR NONLINEAR OPTIMAL CONTROL PROBLEM
    Lu, Zuliang
    Zhang, Shuhua
    Cao, Longzhou
    Li, Lin
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 1113 - 1129
  • [13] A multiscale finite element method for elliptic problems with highly oscillatory coefficients
    Chen, JR
    Cui, JZ
    APPLIED NUMERICAL MATHEMATICS, 2004, 50 (01) : 1 - 13
  • [14] A mixed multiscale finite element method for elliptic problems with oscillating coefficients
    Chen, ZM
    Hou, TY
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 541 - 576
  • [15] A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 297 - 313
  • [16] HETEROGENEOUS MULTISCALE METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY ELLIPTIC EQUATIONS WITH HIGHLY OSCILLATORY COEFFICIENTS
    Ge, Liang
    Yan, Ningning
    Wang, Lianhai
    Liu, Wenbin
    Yang, Danping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (05) : 644 - 660
  • [17] A finite element method for an elliptic optimal control problem with integral state constraints
    Porwal, Kamana
    Shakya, Pratibha
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 273 - 288
  • [18] REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 316 - 337
  • [19] P1finite element methods for a weighted elliptic state-constrained optimal control problem
    Oh, Minah
    Ma, Lina
    Wang, Kening
    NUMERICAL ALGORITHMS, 2021, 87 (01) : 1 - 17
  • [20] P1 finite element methods for a weighted elliptic state-constrained optimal control problem
    Minah Oh
    Lina Ma
    Kening Wang
    Numerical Algorithms, 2021, 87 : 1 - 17