Nuclear operators on Banach function spaces

被引:0
|
作者
Marian Nowak
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Banach function spaces; Mackey topologies; Mixed topologies; Vector measures; Nuclear operators; Bochner representable operators; Kernel operators; Radon–Nikodym property; Orlicz spaces; Orlicz-Bochner spaces; 47B38; 47B10; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and E be a perfect Banach function space over a finite measure space (Ω,Σ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,\Sigma ,\lambda )$$\end{document} such that L∞⊂E⊂L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty \subset E\subset L^1$$\end{document}. Let E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} denote the Köthe dual of E and τ(E,E′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (E,E')$$\end{document} stand for the natural Mackey topology on E. It is shown that every nuclear operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E\rightarrow X$$\end{document} between the locally convex space (E,τ(E,E′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\tau (E,E'))$$\end{document} and a Banach space X is Bochner representable. In particular, we obtain that a linear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} between the locally convex space (L∞,τ(L∞,L1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L^\infty ,\tau (L^\infty ,L^1))$$\end{document} and a Banach space X is nuclear if and only if its representing measure mT:Σ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_T:\Sigma \rightarrow X$$\end{document} has the Radon-Nikodym property and |mT|(Ω)=‖T‖nuc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$\end{document} (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} are nuclear. Moreover, it is shown that every nuclear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} admits a factorization through some Orlicz space Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\varphi $$\end{document}, that is, T=S∘i∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=S\circ i_\infty $$\end{document}, where S:Lφ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:L^\varphi \rightarrow X$$\end{document} is a Bochner representable and compact operator and i∞:L∞→Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_\infty :L^\infty \rightarrow L^\varphi $$\end{document} is the inclusion map.
引用
收藏
页码:801 / 818
页数:17
相关论文
共 50 条
  • [1] Nuclear operators on Banach function spaces
    Nowak, Marian
    POSITIVITY, 2021, 25 (03) : 801 - 818
  • [2] Composition operators on Banach function spaces
    Kumar, R
    Kumar, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2109 - 2118
  • [3] AVERAGING OPERATORS IN BANACH FUNCTION SPACES
    KORVIN, AD
    ROBERTS, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A330 - A330
  • [4] Factorizing operators on Banach function spaces through spaces of multiplication operators
    Calabuig, J. M.
    Delgado, O.
    Sanchez Perez, E. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) : 88 - 103
  • [5] Matrix multiplication operators on Banach function spaces
    Hudzik, H
    Kumar, R
    Kumar, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (01): : 71 - 81
  • [6] FACTORIZATION OF LIPSCHITZ OPERATORS ON BANACH FUNCTION SPACES
    Achour, D.
    Dahia, E.
    Rueda, P.
    Sanchez Perez, E. A.
    Yahi, R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 1091 - 1104
  • [7] COMPACTNESS OF INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    LUXEMBURG, WAJ
    ZAANEN, AC
    MATHEMATISCHE ANNALEN, 1963, 149 (02) : 150 - 180
  • [8] Algebras of multiplication operators in Banach function spaces
    de Pagter, B
    Ricker, WJ
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 245 - 267
  • [9] INVERTIBLE COMPOSITION OPERATORS ON BANACH FUNCTION SPACES
    Kumar, Rajeev
    MATEMATICKI VESNIK, 2007, 59 (03): : 97 - 111
  • [10] Bochner representable operators on Banach function spaces
    Marian Nowak
    Positivity, 2018, 22 : 1303 - 1309