Comments on: High-dimensional simultaneous inference with the bootstrap

被引:1
|
作者
Loffler, Matthias [1 ]
Nickl, Richard [1 ]
机构
[1] Univ Cambridge, Stat Lab, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
SPARSE REGRESSION;
D O I
10.1007/s11749-017-0558-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
引用
收藏
页码:731 / 733
页数:3
相关论文
共 50 条
  • [41] High-dimensional inference for personalized treatment decision
    Jeng, X. Jessie
    Lu, Wenbin
    Peng, Huimin
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 2074 - 2089
  • [42] Scalable inference for high-dimensional precision matrix
    Zheng, Zemin
    Wang, Yue
    Yu, Yugang
    Li, Yang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (23) : 8205 - 8224
  • [43] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [44] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [45] High-dimensional rank-based inference
    Kong, Xiaoli
    Harrar, Solomon W.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (02) : 294 - 322
  • [46] On statistical inference with high-dimensional sparse CCA
    Laha, Nilanjana
    Huey, Nathan
    Coull, Brent
    Mukherjee, Rajarshi
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04)
  • [47] Inference for high-dimensional instrumental variables regression
    Gold, David
    Lederer, Johannes
    Tao, Jing
    JOURNAL OF ECONOMETRICS, 2020, 217 (01) : 79 - 111
  • [48] Lasso inference for high-dimensional time series
    Adamek, Robert
    Smeekes, Stephan
    Wilms, Ines
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1114 - 1143
  • [49] Universal Features for High-Dimensional Learning and Inference
    Huang, Shao-Lun
    Makur, Anuran
    Wornell, Gregory W.
    Zheng, Lizhong
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2024, 21 (1-2): : 1 - 299
  • [50] Markov Neighborhood Regression for High-Dimensional Inference
    Liang, Faming
    Xue, Jingnan
    Jia, Bochao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1200 - 1214