Comments on: High-dimensional simultaneous inference with the bootstrap

被引:1
|
作者
Loffler, Matthias [1 ]
Nickl, Richard [1 ]
机构
[1] Univ Cambridge, Stat Lab, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
SPARSE REGRESSION;
D O I
10.1007/s11749-017-0558-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
引用
收藏
页码:731 / 733
页数:3
相关论文
共 50 条
  • [31] Sparse Markov Models for High-dimensional Inference
    Ost, Guilherme
    Takahashi, Daniel Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [32] On High-Dimensional Constrained Maximum Likelihood Inference
    Zhu, Yunzhang
    Shen, Xiaotong
    Pan, Wei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 217 - 230
  • [33] Inference of Breakpoints in High-dimensional Time Series
    Chen, Likai
    Wang, Weining
    Wu, Wei Biao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1951 - 1963
  • [34] Inference for High-Dimensional Streamed Longitudinal Data
    Senyuan Zheng
    Ling Zhou
    Acta Mathematica Sinica,English Series, 2025, (02) : 757 - 779
  • [35] Implicit Variational Inference for High-Dimensional Posteriors
    Uppal, Anshuk
    Stensbo-Smidt, Kristoffer
    Boomsma, Wouter
    Frellsen, Jes
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [36] HIGH-DIMENSIONAL INFERENCE FOR DYNAMIC TREATMENT EFFECTS
    Bradic, Jelena
    Ji, Weijie
    Zhang, Yuqian
    ANNALS OF STATISTICS, 2024, 52 (02): : 415 - 440
  • [37] Bayesian inference for high-dimensional decomposable graphs
    Lee, Kyoungjae
    Cao, Xuan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1549 - 1582
  • [38] High-dimensional statistical inference via DATE
    Zheng, Zemin
    Liu, Lei
    Li, Yang
    Zhao, Ni
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (01) : 65 - 79
  • [39] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295
  • [40] Group inference for high-dimensional mediation models
    Ke Yu
    Xu Guo
    Shan Luo
    Statistics and Computing, 2025, 35 (3)