The applications of solid codes to r-R and r-D languages

被引:0
|
作者
Zuhua Liu
Yuqi Guo
Jing Leng
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Kunming University,Department of Mathematics
来源
Soft Computing | 2019年 / 23卷
关键词
Solid code; Principal congruence; Relatively regular language; Relatively disjunctive language;
D O I
暂无
中图分类号
学科分类号
摘要
A language S on a free monoid A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called a solid code if S is an infix code and overlap-free. A congruence ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called principal if there exists L⊆A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subseteq A^*$$\end{document} such that ρ=PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =P_L$$\end{document}, where PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_L$$\end{document} is the syntactic congruence determined by L. For any solid code S over A, Reis defined a congruence σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} by means of S and showed it is principal (Semigroup Forum 41:291–306, 1990). A new simple proof of the fact that σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} is principal is given in this paper. Moreover, two congruences ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} defined by solid code S are introduced and proved to be principal. For every class of the classification of Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {D}}}_{\mathbf{r}}$$\end{document} and Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {R}}}_{\mathbf{r}}$$\end{document}, languages are given by means of three principal congruences σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document}, ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document}.
引用
收藏
页码:10709 / 10716
页数:7
相关论文
共 50 条
  • [41] A Narrow QRS Tachycardia With Alternating R-R Interval
    Wu, Fenglin
    Zeng, Lijun
    Pu, Xiaobo
    ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2025, 30 (03)
  • [42] MEASURING OF ECG R-R INTERVALS WITH AN ELECTROMYOGRAPH AND A MICROCOMPUTER
    JANTTI, V
    JUHOLA, M
    KOIVISTO, T
    LAHTI, J
    HEINONEN, E
    NYRKE, T
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1984, 57 (03): : P55 - P55
  • [43] Instanton calculus in R-R background and the topological string
    Billo, Marco
    Frau, Marialuisa
    Fucito, Francesco
    Lerda, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11):
  • [44] R-R间期分析与睡眠分期
    江朝晖
    李继伟
    冯焕清
    王涛
    生物医学工程研究, 2003, (03) : 17 - 20
  • [45] COMPUTER VISION AND R-R LINK ON CADCAM WORK
    DUNN, J
    PROFESSIONAL ENGINEERING, 1994, 7 (19) : 20 - 20
  • [46] THE RELATIONSHIP OF R-R INTERVAL WITH INTRACARDIAC QRS POTENTIAL
    YOKOYAMA, M
    WADA, J
    KAWAMURA, T
    NAGARA, H
    JAPANESE HEART JOURNAL, 1982, 23 : 249 - 251
  • [47] Overhaul licenses cover GE, R-R turbines
    Anon
    Diesel and Gas Turbine Worldwide, 2002, 34 (01):
  • [48] HIGH-RESOLUTION DETERMINATION OF THE R-R INTERVAL
    LAW, HF
    EPSTEIN, RA
    EPSTEIN, MAF
    AMERICAN JOURNAL OF PHYSIOLOGY, 1979, 236 (06): : H894 - H898
  • [49] AN AUTOMATIC SYSTEM FOR MEASURING AVERAGE R-R INTERVAL
    ZURN, KR
    BEHAVIOR RESEARCH METHODS & INSTRUMENTATION, 1970, 2 (02): : 93 - &
  • [50] The types of rational linear complex curves in R-r
    Kantor, VS
    AMERICAN JOURNAL OF MATHEMATICS, 1901, 23 : 1 - 28