The applications of solid codes to r-R and r-D languages

被引:0
|
作者
Zuhua Liu
Yuqi Guo
Jing Leng
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Kunming University,Department of Mathematics
来源
Soft Computing | 2019年 / 23卷
关键词
Solid code; Principal congruence; Relatively regular language; Relatively disjunctive language;
D O I
暂无
中图分类号
学科分类号
摘要
A language S on a free monoid A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called a solid code if S is an infix code and overlap-free. A congruence ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called principal if there exists L⊆A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subseteq A^*$$\end{document} such that ρ=PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =P_L$$\end{document}, where PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_L$$\end{document} is the syntactic congruence determined by L. For any solid code S over A, Reis defined a congruence σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} by means of S and showed it is principal (Semigroup Forum 41:291–306, 1990). A new simple proof of the fact that σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} is principal is given in this paper. Moreover, two congruences ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} defined by solid code S are introduced and proved to be principal. For every class of the classification of Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {D}}}_{\mathbf{r}}$$\end{document} and Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {R}}}_{\mathbf{r}}$$\end{document}, languages are given by means of three principal congruences σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document}, ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document}.
引用
收藏
页码:10709 / 10716
页数:7
相关论文
共 50 条
  • [31] Spectral theorems associated with the Cherednik operators on R-d
    Mejjaoli, Hatem
    AFRIKA MATEMATIKA, 2016, 27 (5-6) : 1091 - 1110
  • [33] CHROMOSOMES OF TSETSE FLY GLOSSINA PALPALIS R-D
    RIORDAN, K
    PARASITOLOGY, 1968, 58 : 835 - &
  • [34] Scalable Depth Maps with R-D Optimized Embedding
    Mathew, Reji
    Taubman, David
    Zanuttigh, Pietro
    2012 IEEE 14TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2012, : 266 - 271
  • [35] Iterative R-D optimization of H.264
    An, Cheolhong
    Nguyen, Truong Q.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 665 - 668
  • [36] The r-d class predictions in linear mixed models
    Kuran, Ozge
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (04): : 477 - 498
  • [37] R-D EXPENDITURES, INNOVATION AND INTERNATIONAL-TRADE
    LACROIX, R
    SCHEUER, P
    REVUE ECONOMIQUE, 1976, 27 (06): : 1008 - 1029
  • [38] R-D Based Quantization in H.264
    Karczewicz, Marta
    Chen, Peisong
    Ye, Yan
    Joshi, Rajan
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXII, 2009, 7443
  • [39] R-D quantisation of complex coefficients in zerotree coding
    Reeves, TH
    Kingsbury, NG
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 480 - 483
  • [40] A maintenance strategy using an optimal R-R policy
    Mathew, S
    Kennedy, D
    SYSTEMS INTEGRITY AND MAINTENANCE, PROCEEDINGS, 2000, : 298 - 302