The applications of solid codes to r-R and r-D languages

被引:0
|
作者
Zuhua Liu
Yuqi Guo
Jing Leng
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Kunming University,Department of Mathematics
来源
Soft Computing | 2019年 / 23卷
关键词
Solid code; Principal congruence; Relatively regular language; Relatively disjunctive language;
D O I
暂无
中图分类号
学科分类号
摘要
A language S on a free monoid A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called a solid code if S is an infix code and overlap-free. A congruence ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called principal if there exists L⊆A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subseteq A^*$$\end{document} such that ρ=PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =P_L$$\end{document}, where PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_L$$\end{document} is the syntactic congruence determined by L. For any solid code S over A, Reis defined a congruence σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} by means of S and showed it is principal (Semigroup Forum 41:291–306, 1990). A new simple proof of the fact that σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} is principal is given in this paper. Moreover, two congruences ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} defined by solid code S are introduced and proved to be principal. For every class of the classification of Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {D}}}_{\mathbf{r}}$$\end{document} and Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {R}}}_{\mathbf{r}}$$\end{document}, languages are given by means of three principal congruences σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document}, ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document}.
引用
收藏
页码:10709 / 10716
页数:7
相关论文
共 50 条
  • [21] R-R DIESELS PLANT SAVED BY PERKINS
    WARD, D
    ENGINEER, 1984, 258 (6670) : 10 - 10
  • [22] ARE R-R INTERVALS IN ECG NORMALLY DISTRIBUTED
    DANEV, SG
    WARTNA, GF
    RADDER, JJ
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1971, 328 (03): : 261 - &
  • [23] R-R INTERVAL DURING NEUROLEPTIC TREATMENT
    MOTOMURA, N
    ASABA, H
    SAKAI, T
    BIOLOGICAL PSYCHIATRY, 1989, 26 (02) : 219 - 220
  • [24] BULGARSENINE (R-R)-(+)-BITARTRATE - A PYRROLIZIDINE ALKALOID
    STOECKLIEVANS, H
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1980, 36 (DEC): : 3150 - 3153
  • [25] R-R INTERVAL CHANGES DURING BEREITSCHAFTSPOTENTIAL
    KRISTEVA, R
    DUNEV, S
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1981, 51 (01): : P5 - P5
  • [26] R-R VARIATIONS, A TEST OF AUTONOMIC DYSFUNCTION
    PERSSON, A
    SOLDERS, G
    ACTA NEUROLOGICA SCANDINAVICA, 1983, 67 (05): : 285 - 293
  • [27] COMPARISON OF R-R INTERVAL PREDICTION MODELS
    GROVE, TM
    MURTHY, VK
    HARVEY, GA
    HAYWOOD, LJ
    MEDICAL INSTRUMENTATION, 1978, 12 (05): : 293 - 295
  • [28] T duality constraint on R-R couplings
    Garousi, Mohammad R.
    PHYSICAL REVIEW D, 2020, 102 (08):
  • [29] ARE R-R INTERVALS IN ECG NORMALLY DISTRIBUTED
    DANEV, SG
    ERGONOMICS, 1973, 16 (03) : 311 - 311
  • [30] Poisson summation for functions of bounded variation on R-d
    Liflyand, E.
    Stadtmueller, U.
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (3-4): : 491 - 498